SUPPLEMENT TO FINAL REPORT BOEM 2017-071

Atlantic Marine Assessment Program for Protected Species: 2010-2014

Appendix I

Appendix I: Density Models and Maps

Contents

Lis	t of Tables		vi
Lis	t of Figures		ix
1	Study Area.		1
2	Humpback \	Nhale (Megaptera novaeangliae)	3
2	2.1	Data Collection	4
	2.2	Mark-Recapture Distance Sampling Analysis	6
	2.3	Generalized Additive Model Analysis	8
	2.4	Abundance Estimates for AMAPPS Study Area	9
	2.5	Seasonal Prediction Maps	.11
	2.6	Wind Energy Study Areas	.27
3	Fin Whale (B	Balaenoptera physalus)	29
	3.1	Data Collection	.30
	3.2	Mark-Recapture Distance Sampling Analysis	.31
	3.3	Generalized Additive Model Analysis	.33
	3.4	Abundance Estimates for AMAPPS Study Area	.34
	8.5	Seasonal Prediction Maps	.35
	8.6	Wind Energy Study Areas	.51
4	Sei Whale (<i>I</i>	Balaenoptera borealis)	53
4	l.1	Data Collection	.54
4	1.2	Mark-Recapture Distance Sampling Analysis	.55
4	1.3	Generalized Additive Model Analysis	.56
4	1.4	Abundance Estimates for AMAPPS Study Area	.58
4	1.5	Seasonal Prediction Maps	.59
4	1.6	Wind Energy Study Areas	.74
5	Minke Whale	e (Balaenoptera acutorostrata)	76
Ę	5.1	Data Collection	.77
Ę	5.2	Mark-Recapture Distance Sampling Analysis	.78

	5.3	Generalized Additive Model Analysis	80
	5.4	Abundance Estimates for AMAPPS Study Area	82
	5.5	Seasonal Prediction Maps	83
	5.6	Wind Energy Study Areas	98
6	Sperm Wha	e (Physeter macrocephalus)	100
	6.1	Data Collection	101
	6.2	Mark-Recapture Distance Sampling Analysis	102
	6.3	Generalized Additive Model Analysis	104
	6.4	Abundance Estimates for AMAPPS Study Area	106
	6.5	Seasonal Prediction Maps	107
	6.6	Wind Energy Study Areas	123
7	Cuvier's Bea	aked Whale (Ziphius cavirostris)	125
	7.1	Data Collection	126
	7.2	Mark-Recapture Distance Sampling Analysis	127
	7.3	Generalized Additive Model Analysis	128
	7.4	Abundance Estimates for AMAPPS Study Area	130
	7.5	Seasonal Prediction Maps	131
	7.6	Wind Energy Study Areas	136
8	Sowerby's E	Beaked Whale (Mesoplodon bidens)	137
	8.1	Data Collection	138
	8.2	Mark-Recapture Distance Sampling Analysis	139
	8.3	Generalized Additive Model Analysis	140
	8.4	Abundance Estimates for AMAPPS Study Area	142
	8.5	Seasonal Prediction Maps	143
	8.6	Wind Energy Study Areas	148
9	Unidentified	Beaked Whales	149
	9.1	Data Collection	150
	9.2	Mark-Recapture Distance Sampling Analysis	151
	9.3	Generalized Additive Model Analysis	152

9.4	Abundance Estimates for AMAPPS Study Area	154
9.5	Seasonal Prediction Maps	155
9.6	Wind Energy Study Areas	160
10 Pygmy/D	warf Sperm Whales (<i>Kogia</i> spp)	161
10.1	Data Collection	162
10.2	Mark-Recapture Distance Sampling Analysis	164
10.3	Generalized Additive Model Analysis	165
10.4	Abundance Estimates for AMAPPS Study Area	167
10.5	Seasonal Prediction Maps	168
10.6	Wind Energy Study Areas	173
11 Pilot What	ales (<i>Globicephala</i> spp)	174
11.1	Data Collection	175
11.2	Mark-Recapture Distance Sampling Analysis	177
11.3	Generalized Additive Model Analysis	179
11.4	Abundance Estimates for AMAPPS Study Area	181
11.5	Seasonal Prediction Maps	182
11.6	Wind Energy Study Areas	198
12 Risso's D	Dolphin (<i>Grampus griseus</i>)	200
12.1	Data Collection	201
12.2	Mark-Recapture Distance Sampling Analysis	202
12.3	Generalized Additive Model Analysis	204
12.4	Abundance Estimates for the AMAPPS Study area	206
12.5	Seasonal Prediction Maps	207
12.6	Wind Energy Study Areas	223
13 Atlantic V	White-sided Dolphin (Lagenorhynchus acutus)	225
13.1	Data Collection	226
13.2	Mark-Recapture Distance Sampling Analysis	227
13.3	Generalized Additive Model Analysis	228
13.4	Abundance Estimates for AMAPPS Study Area	230

13.5	Seasonal Prediction Maps	231
13.6	Wind Energy Study Areas	246
14 Co	mmon Dolphin (<i>Delphinus delphis</i>)	248
14.1	Data Collection	249
14.2	Mark-Recapture Distance Sampling Analysis	250
14.3	Generalized Additive Model Analysis	252
14.4	Abundance Estimates for AMAPPS Study Area	254
14.5	Seasonal Prediction Maps	255
14.6	Wind Energy Study Areas	271
15 Atl	antic Spotted Dolphin (Stenella frontalis)	273
15.1	Data Collection	274
15.2	Mark-Recapture Distance Sampling Analysis	275
15.3	Generalized Additive Model Analysis	276
15.4	Abundance Estimates for AMAPPS Study Area	278
15.5	Seasonal Prediction Maps	279
15.6	Wind Energy Study Areas	294
16 Str	iped Dolphin (Stenella coeruleoalba)	296
16.1	Data Collection	297
16.2	Mark-Recapture Distance Sampling Analysis	298
16.3	Generalized Additive Model Analysis	
16.4	Abundance Estimates for AMAPPS Study Area	
16.5	Seasonal Prediction Maps	
16.6	Wind Energy Study Areas	
17 Co	mmon Bottlenose Dolphin (<i>Tursiops truncatus</i>)	
17.1	Data Collection	310
17.2	Mark-Recapture Distance Sampling Analysis	311
17.3	Generalized Additive Model Analysis	313
17.4	Abundance Estimates for AMAPPS Study Area	315
17.5	Seasonal Prediction Maps	316

17.6	Wind Energy Study Areas	
18 Harbor Po	orpoise (<i>Phocoena phocoena</i>)	339
18.1	Data Collection	340
18.2	Mark-Recapture Distance Sampling Analysis	341
18.3	Generalized Additive Model Analysis	
18.4	Abundance Estimates for AMAPPS Study Area	
18.5	Seasonal Prediction Maps	347
18.6	Wind Energy Study Areas	
19 Phocidae	At-sea	364
19.1	Data Collection	
19.2	Mark-Recapture Distance Sampling Analysis	
19.3	Generalized Additive Model Analysis	
19.4	Abundance Estimates for AMAPPS Study Area	
19.5	Seasonal Prediction Maps	
19.6	Wind Energy Study Areas	
20 Reference	es	
20.1	OBIS-SEAMAP Contributors	

List of Tables

Table 2-1 Research effort 2010 - 2013 and humpback whale sightings	5
Table 2-2 Parameter estimates from humpback whale (HUWH) MRDS analysis	6
Table 2-3 Habitat model output for humpback whales	8
Table 2-4 Diagnostic statistics from humpback whale habitat model	9
Table 2-5 Humpback whale average abundance estimates for AMAPPS study area	9
Table 2-6 Humpback whale average abundance estimates for wind energy study areas	27
Table 3-1 Research effort 2010 - 2013 and fin whale sightings	31
Table 3-2 Parameter estimates from fin whale (FIWH) MRDS analysis	31
Table 3-3 Habitat model output for fin whales	33
Table 3-4 Diagnostic statistics from fin whale habitat model	34
Table 3-5 Fin whale average abundance estimates for AMAPPS study area	34
Table 3-6 Fin whale average abundance estimates for wind energy study areas	51
Table 4-1 Research effort 2010 - 2013 and sei whale sightings	55
Table 4-2 Parameter estimates from sei whale (SEWH) MRDS analysis	55
Table 4-3 Habitat model output for sei whales	56
Table 4-4 Diagnostic statistics from sei whale habitat model	57
Table 4-5 Sei whale average abundance estimates for AMAPPS study area	58
Table 4-6 Sei whale average abundance estimates for wind energy study areas	74
Table 5-1 Research effort 2010 - 2013 and minke whale sightings	78
Table 5-2 Parameter estimates from minke whale (MIWH) MRDS analysis	78
Table 5-3 Habitat model output for minke whales	80
Table 5-4 Diagnostic statistics from minke whale habitat model	81
Table 5-5 Minke whale average abundance estimates for AMAPPS study area	82
Table 5-6 Minke whale average abundance estimates for wind energy study areas	98
Table 6-1 Research effort 2010 - 2013 and sperm whale sightings	102
Table 6-2 Parameter estimates from sperm whale (SPWH) MRDS analysis	. 102
Table 6-3 Habitat model output for sperm whales	. 104
Table 6-4 Diagnostic statistics from sperm whale habitat model	105
Table 6-5 Sperm whale average abundance estimates for AMAPS study area	. 106
Table 6-6 Sperm whale average abundance estimates for AMAPPS study area	. 123
Table 7-1 Research effort 2010 - 2013 and Cuvier's beaked whale sightings	. 127
Table 7-2 Parameter estimates from Cuvier's beaked whale (CBWH) MRDS analysis	. 127
Table 7-3 Habitat model output for Cuvier's beaked whales	. 128
Table 7-4 Diagnostic statistics from Cuvier's beaked whale habitat model	129
Table 7-5 Cuvier's beaked whale average abundance estimates for AMAPPS study area	130
Table 7-6 Cuvier's beaked whale average abundance estimates for wind energy study areas	136
Table 8-1 Research effort 2010 - 2013 and Sowerby's beaked whale sightings	139
Table 8-2 Parameter estimates from Sowerby's beaked whale (SBWH) MRDS analysis	139

Table 8-3 Habitat model output for Sowerby's beaked whales	140
Table 8-4 Diagnostic statistics from Sowerby's beaked whale model	141
Table 8-5 Sowerby's beaked whale average abundance estimates for AMAPPS study area	142
Table 8-6 Sowerby's beaked whale average abundance estimates for wind energy study areas	148
Table 9-1 Research effort 2010 - 2013 and unidentified beaked whale sightings	151
Table 9-2 Parameter estimates from unidentified beaked whale (UNBW) MRDS analysis	151
Table 9-3 Habitat model output for unidentified beaked whales	152
Table 9-4 Diagnostic statistics from unidentifed beaked whale habitat model	153
Table 9-5 Unidentified beaked whale average abundance estimates for AMAPPS study area	154
Table 9-6 Unidentified beaked whale average abundance estimates for wind energy study are	as
	160
Table 10-1 Research effort 2010 - 2013 and Kogia sightings	163
Table 10-2 Parameter estimates from Kogia (UNKO, DSWH, PSWH) MRDS analysis	164
Table 10-3 Habitat model output for Kogia	165
Table 10-4 Diagnostic statistics from <i>Kogia</i> habitat model	166
Table 10-5 Kogia average abundance estimates for AMAPPS study area	167
Table 10-6 Kogia average abundance estimates for wind energy study areas	173
Table 11-1 Research effort 2010 - 2013 and pilot whale sightings	176
Table 11-2 Parameter estimates from pilot whale (LSPW, LFPW, and SFPW) MRDS analysi	S
	177
Table 11-3 Habitat model output for pilot whales	179
Table 11-4 Diagnostic statistics from pilot whale habitat model	180
Table 11-5 Pilot whale average abundance estimates for AMAPPS study area	181
Table 11-6 Pilot whale average abundance estimates for wind energy study areas	198
Table 12-1 Research effort 2010 - 2013 and Risso's dolphin sightings	202
Table 12-2 Parameter estimates from Risso's dolphin (RIDO) MRDS analysis	202
Table 12-3 Habitat model output for Risso's dolphins	204
Table 12-4 Diagnostic statistics from Risso's dolphin habitat model	205
Table 12-5 Risso's dolphin average abundance estimates for AMAPPS study area	206
Table 12-6 Risso's dolphin average abundance estimates for wind energy study areas	223
Table 13-1 Research effort 2010 - 2013 and Atlantic white-sided dolphin sightings	227
Table 13-2 Parameter estimates from Atlantic white-sided dolphin (WSDO) MRDS analysis.	227
Table 13-3 Habitat model output for Atlantic white-sided dolphins	228
Table 13-4 Diagnostic statistics from Atlantic white-sided dolphin habitat model	229
Table 13-5 Atlantic white-sided dolphin average abundance estimates for AMAPPS study are	ea
	230
Table 13-6 Atlantic white-sided dolphin average abundance estimates for wind energy study	
areas	246
Table 14-1 Research effort 2010 - 2013 and common dolphin sightings	250
Table 14-2 Parameter estimates from common dolphin (CODO) MRDS analysis	250

Table 14-3 Habitat model output for common dolphins	252
Table 14-4 Diagnostic statistics from common dolphin habitat model	253
Table 14-5 Common dolphin average abundance estimates for AMAPPS study area	254
Table 14-6 Common dolphin average abundance estimates for wind energy study areas	271
Table 15-1 Research effort 2010 - 2013 and Atlantic spotted dolphin sightings	275
Table 15-2 Parameter estimates from Atlantic spotted dolphin (ASDO) MRDS analysis	275
Table 15-3 Habitat model output for Atlantic spotted dolphins	276
Table 15-4 Diagnostic statistics from Atlantic spotted dolphin habitat model	277
Table 15-5 Atlantic spotted dolphin average abundance estimates for AMAPPS study area	278
Table 15-6 Atlantic spotted dolphin average abundance estimates for wind energy study ar	eas294
Table 16-1 Research effort 2010 - 2013 and striped dolphin sightings	298
Table 16-2 Parameter estimates from striped dolphin (STDO) MRDS analysis	298
Table 16-3 Habitat model output for striped dolphins	300
Table 16-4 Diagnostic statistics for striped dolphin habitat model	301
Table 16-5 Striped dolphin average abundance estimates for AMAPPS study area	302
Table 16-6 Striped dolphin average abundance estimates for wind energy study areas	308
Table 17-1 Research effort 2010 - 2013 and common bottlenose dolphin sightings	311
Table 17-2 Parameter estimates from common bottlenose dolphin (CBDO) MRDS analysis	s 311
Table 17-3 Habitat model output from common bottlenose dolphins	313
Table 17-4 Diagnostic statistics from common bottlenose dolphin habitat model	314
Table 17-5 Common bottlenose dolphin average abundance estimates for AMAPPS study	area
	315
Table 17-6 Common bottlenose dolphin average abundance estimates for wind energy stud	ły
areas	337
Table 18-1 Research effort 2010 - 2013 and harbor porpoise sightings	341
Table 18-2 Parameter estimates from harbor porpoise (HAPO) MRDS analysis	341
Table 18-3 Spring habitat model output for harbor porpoises	342
Table 18-4 Summer habitat model output for harbor porpoises	343
Table 18-5 Fall habitat model output for harbor porpoises	344
Table 18-6 Diagnostic statistics from harbor porpoise spring habitat model	345
Table 18-7 Diagnostic statistics from harbor porpoise summer habitat model	345
Table 18-8 Diagnostic statistics from harbor porpoise fall habitat model	345
Table 18-9 Harbor porpoise average abundance estimates for AMAPPS study area	346
Table 18-10 Harbor porpoise average abundance estimates for wind energy study areas	362
Table 19-1 Research effort 2010 - 2013 and at-sea seal sightings	366
	_
Table 19-2 Parameter estimates from seals at-sea mark-recapture distance sampling	366
Table 19-2 Parameter estimates from seals at-sea mark-recapture distance sampling Table 19-3 Habitat model output for seals at-sea	366 367
Table 19-2 Parameter estimates from seals at-sea mark-recapture distance sampling Table 19-3 Habitat model output for seals at-sea Table 19-4 Diagnostic statistics for seals at-sea habitat model	366 367 368
Table 19-2 Parameter estimates from seals at-sea mark-recapture distance sampling Table 19-3 Habitat model output for seals at-sea Table 19-4 Diagnostic statistics for seals at-sea habitat model Table 19-5 Seals at-sea average abundance estimates for AMAPPS study area	366 367 368 369

List of Figures

Figure 1-1 AMAPPS study area and Massachusetts to North Carolina wind energy study areas	s 1
Figure 1-2 AMAPPS study area and North Carolina to Florida wind energy study areas	2
Figure 2-1 Humpback whale. Credit: NOAA/NEFSC/Kelly Slivka	3
Figure 2-2 Track lines and humpback whale sightings during 2010 - 2013	4
Figure 2-3 Q-Q plots and detection functions from humpback whale MRDS analysis	7
Figure 2-4 Humpback whale density related to significant habitat covariates	8
Figure 2-5 Annual abundance trends for humpback whales for AMAPPS study area	. 10
Figure 2-6 Humpback whale spring average density estimates	. 11
Figure 2-7 Lower 2.5% percentile of spring humpback whale estimates	. 12
Figure 2-8 Upper 97.5% percentile of spring humpback whale estimates	. 13
Figure 2-9 Humpback whale 2010-2013 spring density and 1970-2014 OBIS sightings	. 14
Figure 2-10 Humpback whale spring 2014 density and AMAPPS 2014 tracks and sightings	. 15
Figure 2-11 CV of spring density estimates for humpback whales	. 16
Figure 2-12 Humpback whale summer average density estimates	. 17
Figure 2-13 Lower 2.5% percentile of summer humpback whale estimates	. 18
Figure 2-14 Upper 97.5% percentile of summer humpback whale estimates	. 19
Figure 2-15 Humpback whale 2010-2013 summer density and 1970-2014 OBIS sightings	. 20
Figure 2-16 CV of summer density estimates for humpback whales	. 21
Figure 2-17 Humpback whale fall average density estimates	. 22
Figure 2-18 Lower 2.5% percentile of fall humpback whale estimates	. 23
Figure 2-19 Upper 97.5% percentile of fall humpback whale estimates	. 24
Figure 2-20 Humpback whale 2010-2013 fall density and 1970-2014 OBIS sightings	. 25
Figure 2-21 CV of fall density estimates for humpback whales	. 26
Figure 2-22 Annual abundance trends for humpback whales in wind energy study areas	. 28
Figure 3-1 Fin whale. Credit: NOAA/NEFSC/Brenda Rone	. 29
Figure 3-2 Track lines and fin whale sightings during 2010 - 2013	. 30
Figure 3-3 Q-Q plots and detection functions from fin whale MRDS analysis	. 32
Figure 3-4 Fin whale density related to significant habitat covariates	. 33
Figure 3-5 Annual abundance trends for fin whales for AMAPPS study area	. 34
Figure 3-6 Fin whale spring average density estimates	. 35
Figure 3-7 Lower 2.5% percentile of spring fin whale estimates	. 36
Figure 3-8 Upper 97.5% percentile of spring fin whale estimates	. 37
Figure 3-9 Fin whale 2010-2013 spring density and 1970-2014 OBIS sightings	. 38
Figure 3-10 Fin whale spring 2014 density and AMAPPS 2014 tracks and sightings	. 39
Figure 3-11 CV of spring density estimates for fin whales	. 40
Figure 3-12 Fin whale summer average density estimates	. 41
Figure 3-13 Lower 2.5% percentile of summer fin whale estimates	. 42

Figure 3-14 Upper 97.5% percentile of summer fin whale estimates	43
Figure 3-15 Fin whale 2010-2013 summer density and 1970-2014 OBIS sightings	44
Figure 3-16 CV of summer density estimates for fin whales	45
Figure 3-17 Fin whale fall average density estimates	46
Figure 3-18 Lower 2.5% percentile of fall fin whale estimates	47
Figure 3-19 Upper 97.5% percentile of fall fin whale estimates	48
Figure 3-20 Fin whale 2010-2013 fall density and 1970-2014 OBIS sightings	49
Figure 3-21 CV of fall density estimates for fin whales	50
Figure 3-22 Annual abundance trends for fin whales in wind energy study areas	52
Figure 4-1 Sei whale. Credit: NOAA/NEFSC/Christin Khan	53
Figure 4-2 Track lines and sei whale sightings during 2010 - 2013	54
Figure 4-3 Q-Q plots and detection functions from sei whale MRDS analysis	56
Figure 4-4 Sei whale density related to significant habitat covariates	57
Figure 4-5 Annual abundance trends for sei whales for AMAPPS study area	58
Figure 4-6 Sei whale spring average density estimates	59
Figure 4-7 Lower 2.5% percentile of spring sei whale estimates	60
Figure 4-8 Upper 97.5% percentile of spring sei whale estimates	61
Figure 4-9 Sei whale 2010-2013 spring density and 1968-2013 OBIS sightings	62
Figure 4-10 CV of spring density estimates for sei whales	63
Figure 4-11 Sei whale summer average density estimates	64
Figure 4-12 Lower 2.5% percentile of summer sei whale estimates	65
Figure 4-13 Upper 97.5% percentile of summer sei whale estimates	66
Figure 4-14 Sei whale 2010-2013 summer density and 1968-2013 OBIS sightings	67
Figure 4-15 CV of summer density estimates for sei whales	68
Figure 4-16 Sei whale fall average density estimates	69
Figure 4-17 Lower 2.5% percentile of fall sei whale estimates	70
Figure 4-18 Upper 97.5% percentile of fall sei whale estimates	71
Figure 4-19 Sei whale 2010-2013 fall density and 1968-2013 OBIS sightings	72
Figure 4-20 CV of fall density estimates for sei whales	73
Figure 4-21 Annual abundance trends for sei whales in wind energy study areas	75
Figure 5-1 Minke whale: Credit: NOAA/NEFSC/Cynthia Christman	76
Figure 5-2 Track lines and minke whale sightings during 2010 - 2013	77
Figure 5-3 Q-Q plots and detection functions from minke whale MRDS analysis	79
Figure 5-4 Minke whale density related to significant habitat covariates	80
Figure 5-5 Annual abundance trends for minke whales for AMAPPS study area	82
Figure 5-6 Minke whale spring average density estimates	83
Figure 5-7 Lower 2.5% percentile of spring minke whale estimates	84
Figure 5-8 Upper 97.5% percentile of spring minke whale estimates	85
Figure 5-9 Minke whale 2010-2013 spring density and 1974-2014 OBIS sightings	86
Figure 5-10 CV of spring density estimates for minke whales	87

Figure 5-11 Minke whale summer average density estimates	88
Figure 5-12 Lower 95% percentile of summer minke whale estimates	89
Figure 5-13 Upper 97.5% percentile of summer minke whale estimates	90
Figure 5-14 Minke whale 2010-2013 summer density and 1974-2014 OBIS sightings	91
Figure 5-15 CV of summer density estimates for minke whales	92
Figure 5-16 Minke whale fall average density estimates	93
Figure 5-17 Lower 2.5% percentile of fall minke whale estimates	94
Figure 5-18 Upper 97.5% percentile of fall minke whale estimates	95
Figure 5-19 Minke whale 2010-2013 fall density and 1974-2014 OBIS sightings	96
Figure 5-20 CV of fall density estimates for minke whales	97
Figure 5-21 Annual abundance trends for minke whales in wind energy study areas	99
Figure 6-1 Sperm whale. Credit: NOAA/NEF NEFSC/Christin Khan	100
Figure 6-2 Track lines and sperm whale sightings during 2010 - 2013	101
Figure 6-3 Q-Q plots and detection functions from sperm whale MRDS analysis	103
Figure 6-4 Sperm whale density related to significant habitat covariates	104
Figure 6-5 Annual abundance trends for sperm whales in wind energy study areas	106
Figure 6-6 Sperm whale spring average density estimates	107
Figure 6-7 Lower 95% percentile of spring sperm whale estimates	108
Figure 6-8 Upper 97.5% percentile of spring sperm whale estimates	109
Figure 6-9 Sperm whale 2010-2013 spring density and 1970-2013 OBIS sightings	110
Figure 6-10 Sperm whale spring 2014 density and AMAPPS 2014 tracks and sightings	111
Figure 6-11 CV of spring estimates for sperm whales	112
Figure 6-12 Sperm whale summer average density estimates	113
Figure 6-13 Lower 2.5% percentile of summer sperm whale estimates	114
Figure 6-14 Upper 97.5% percentile of summer sperm whale estimates	115
Figure 6-15 Sperm whale 2010-2013 summer density and 1970-2013 OBIS sightings	116
Figure 6-16 CV of summer density estimates for sperm whales	117
Figure 6-17 Sperm whale fall average density estimates	118
Figure 6-18 Lower 2.5% percentile of fall sperm whale estimates	119
Figure 6-19 Upper 97.5% percentile of fall sperm whale estimates	120
Figure 6-20 Sperm whale 2010-2013 fall density and 1970-2013 OBIS sightings	121
Figure 6-21 CV of fall density estimates for sperm whales	122
Figure 6-22 Annual abundance trends for sperm whales in wind energy study areas	124
Figure 7-1 Cuvier's beaked whale. Credit: NOAA/SEFSC	125
Figure 7-2 Track lines and Cuvier's beaked whale sightings during 2010 - 2013	126
Figure 7-3 Q-Q plots and detection functions from Cuvier's beaked whale MRDS analysis	128
Figure 7-4 Cuvier's beaked whale density related to significant habitat covariates	129
Figure 7-5 Annual abundance trends for Cuvier's beaked whales for AMAPPS study area	130
Figure 7-6 Cuvier's beaked whale summer average density estimates	131
Figure 7-7 Lower 2.5% percentile of summer Cuvier's beaked whale estimates	132

Figure 7-8 Upper 97.5% percentile of summer Cuvier's beaked whale estimates	133
Figure 7-9 Cuvier's beaked whale 2010-2013 summer density and 1970-2013 OBIS sightings	134
Figure 7-10 CV of summer density estimates for Cuvier's beaked whales	135
Figure 7-11 Annual abundance trends for Cuvier's beaked whales in wind energy study areas	136
Figure 8-1 Sowerby's beaked whale. Credit: NOAA/NEFSC/Desray Reeb	137
Figure 8-2 Track lines and Sowerby's beaked whale sightings during 2010 - 2013	138
Figure 8-3 Q-Q plots and detection functions from Sowerby's beaked whale MRDS analysis.	140
Figure 8-4 Sowerby's beaked whale density related to significant habitat covariates	141
Figure 8-5 Annual abundance trends for Sowerby's beaked whales for AMAPPS study area	142
Figure 8-6 Sowerby's beaked whale summer average density estimates	143
Figure 8-7 Lower 2.5% percentile of summer Sowerby's beaked whale estimates	144
Figure 8-8 Upper 97.5% percentile of summer Sowerby's beaked whale estimates	145
Figure 8-9 Sowerby's beaked whale 2010-2013 summer density and 1995-2014 OBIS sighting	gs
	146
Figure 8-10 CV of summer density estimates for Sowerby's beaked whales	147
Figure 8-11 Annual abundance trends for Sowerby's beaked whales in wind energy study area	lS
	148
Figure 9-1 Unidentified beaked whales. Credit: NOAA/NEFSC/Peter Duley	149
Figure 9-2 Track lines and unidentified beaked whale sightings during 2010-2013	150
Figure 9-3 Q-Q plots and detection functions from unidentified beaked whale MRDS analysis	\$
	152
Figure 9-4 Unidentified beaked whale density related to significant habitat covariates	153
Figure 9-5 Annual abundance trends for unidentified beaked whales for AMAPPS study area	154
Figure 9-6 Unidentified beaked whale summer average density estimates	155
Figure 9-7 Lower 2.5% percentile of summer unidentified beaked whale estimates	156
Figure 9-8 Upper 97.5% percentile of summer unidentified beaked whale estimates	157
Figure 9-9 Unidentified beaked whale 2010-2013 summer density and 1970-2013 OBIS	
sightings	158
Figure 9-10 CV of summer density estimates for unidentified beaked whales	159
Figure 9-11 Annual abundance trends for unidentified beaked whales in wind energy study are	eas
	160
Figure 10-1 Pygmy or dwarf sperm whale. Credit: NOAA/SEFSC	161
Figure 10-2 Track lines and <i>Kogia</i> sightings during 2010 - 2013	162
Figure 10-3 Q-Q plots and detection functions from Kogia MRDS analysis	165
Figure 10-4 Kogia density related to significant habitat covariates	166
Figure 10-5 Annual abundance trends for Kogia for AMAPPS study area	167
Figure 10-6 Kogia summer average density estimates	168
Figure 10-7 Lower 2.5% percentile of summer Kogia estimates	169
Figure 10-8 Upper 97.5% percentile of summer Kogia estimates	170
Figure 10-9 Kogia 2010-2013 summer density and 1980-2013 OBIS sightings	171

Figure 10-10 CV of summer density estimates for Kogia	
Figure 10-11 Annual abundance trends for Kogia in wind energy study areas	
Figure 11-1 Pilot whale. Credit: NOAA/NEFSC/Peter Duley	
Figure 11-2 Track lines and pilot whale sightings during 2010 - 2013	
Figure 11-3 Q-Q plots and detection functions from pilot whale MRDS analysis	
Figure 11-4 Pilot whale density related to significant habitat covariates	
Figure 11-5 Annual abundance trends for pilot whales in wind energy study areas	
Figure 11-6 Pilot whale spring average density estimates	
Figure 11-7 Lower 2.5% percentile of spring pilot whale estimates	
Figure 11-8 Upper 97.5% percentile of spring pilot whale estimates	
Figure 11-9 Pilot whale 2010-2013 spring density and 1970-2014 OBIS sightings	
Figure 11-10 Pilot whle spring 2014 density and AMAPPS 2014 tracks and sightings	
Figure 11-11 CV of spring density estimates for pilot whales	
Figure 11-12 Pilot whale summer average density estimates	
Figure 11-13 Lower 2.5% percentile of spring pilot whale estimates	189
Figure 11-14 Upper 97.5% percentile of summer pilot whale estimates	190
Figure 11-15 Pilot whale 2010-2013 summer density and 1970-2014 OBIS sightings	191
Figure 11-16 CV of summer density estimates for pilot whales	192
Figure 11-17 Pilot whale fall average density estimates	193
Figure 11-18 Lower 2.5% percentile of fall pilot whale estimates	
Figure 11-19 Upper 97.5% percentile of fall pilot whale estimates	195
Figure 11-20 Pilot whale 2010-2013 fall density and 1970-2014 OBIS sightings	196
Figure 11-21 CV of fall density estimates for pilot whales	
Figure 11-22 Annual abundance trends for pilot whales in wind energy study areas	199
Figure 12-1 Risso's dolphin. Credit: NOAA/NEFSC/Peter Duley	200
Figure 12-2 Track lines and Risso's dolphin sightings during 2010 - 2013	
Figure 12-3 Q-Q plots and detection functions from Risso's dolphin MRDS analysis .	
Figure 12-4 Risso's dolphin density related to significant habitat covariates	
Figure 12-5 Annual abundance trends for Risso's dolphins for AMAPPS study area	
Figure 12-6 Risso's dolphin spring average density estimates	
Figure 12-7 Lower 2.5% percentile of spring Risso's dolphin estimates	
Figure 12-8 Upper 97.5% percentile of spring Risso's dolphin estimates	
Figure 12-9 Risso's dolphin 2010-2013 spring density and 1970-2014 OBIS sightings	
Figure 12-10 Risso's dolphin spring 2014 density and AMAPPS 2014 tracks and sigh	tings 211
Figure 12-11 CV of spring density estimates for Risso's dolphins	
Figure 12-12 Risso's dolphin summer average density estimates	
Figure 12-13 Lower 2.5% percentile of summer Risso's dolphin estimates	
Figure 12-14 Upper 97.5% percentile of summer Risso's dolphin estimates	
Figure 12-15 Risso's dolphin 2010 - 2013 summer density and 1970-2014 OBIS sight	tings 216
Figure 12-16 CV of summer density estimates for Risso's dolphin	

Figure 12-17 Risso's dolphin fall average density estimates	218
Figure 12-18 Lower 2.5% percentile of fall Risso's dolphin estimates	219
Figure 12-19 Upper 97.5% percentile of fall Risso's dolphin estimates	220
Figure 12-20 Risso's dolphin 2010-2013 fall density and 1970-2014 OBIS sightings	221
Figure 12-21 CV of fall density estimates for Risso's dolphins	222
Figure 12-22 Annual abundance trends for Risso's dolphins in wind energy study areas	224
Figure 13-1 Atlantic white-sided dolphin. Credit: NOAA/NEFSC	225
Figure 13-2 Track lines and Atlantic white-sided dolphin sightings during 2010-2013	226
Figure 13-3 Q-Q plots and detection functions from Atlantic white-sided dolphin MRDS a	analysis
	228
Figure 13-4 Atlantic white-sided dolphin density related to significant habitat covariates	229
Figure 13-5 Annual abundance trends for Atlantic white-sided dolphins for AMAPPS stud	dy area
	230
Figure 13-6 Atlantic white-sided dolphin spring average density estimates	231
Figure 13-7 Lower 2.5% percentile of spring Atlantic white-sided dolphin estimates	232
Figure 13-8 Upper 97.5% percentile of spring Atlantic white-sided dolphin estimates	233
Figure 13-9 Atlantic white-sided dolphin 2010-2013 spring density and 1970-2013 OBIS	
sightings	234
Figure 13-10 CV of spring density estimates for Atlantic white-sided dolphins	235
Figure 13-11 Altantic white-sided dolphin summer average density estimates	236
Figure 13-12 Lower 2.5% percentile of summer Atlantic white-sided dolphin estimates	237
Figure 13-13 Upper 97.5% percentile of summer Atlantic white-sided dolphin estimates	238
Figure 13-14 Atlantic white-sided dolphin summer density and 1970-2013 OBIS sightings	s 239
Figure 13-15 CV of summer density estimates for Atlantic white-sided dolphins	240
Figure 13-16 Atlantic white-sided dolphin fall average density estimates	241
Figure 13-17 Lower 2.5% percentile of fall Atlantic white-sided dolphin estimates	242
Figure 13-18 Upper 97.5% percentile of fall Atlantic white-sided dolphin estimates	243
Figure 13-19 Atlantic white-sided dolphin 2010-2013 fall density and 1970-2013 OBIS si	ghtings
	244
Figure 13-20 CV of fall density estimates for Atlantic white-sided dolphins	245
Figure 13-21 Annaul abundance trends for Atlantic white-sided dolphins in wind energy s	study
areas	247
Figure 14-1 Common dolphin. Credit: NOAA/NEFSC/Allison Henry	248
Figure 14-2 Track lines and common dolphin sightings during 2010 - 2013	249
Figure 14-3 Q-Q plots and detection functions from common dolphin MRDS analysis	251
Figure 14-4 Common dolphin density related to significant habitat covariates	252
Figure 14-5 Annual abudance trends for common dolphins for AMAPPS study area	254
Figure 14-6 Common dolphin spring average density estimates	255
Figure 14-7 Lower 2.5% percentile of spring common dolphin estimates	256
Figure 14-8 Upper 97.5% percentile of spring common dolphin estimates	257

Figure 14-9 Common dolphin 2010-2013 spring density and 1963-2014 OBIS sightings	258
Figure 14-10 Common dolphin spring 2014 density and AMAPPS 2014 tracks and sightings	259
Figure 14-11 CV of spring density estimates for common dolphins	260
Figure 14-12 Common dolphin summer average density estimates	261
Figure 14-13 Lower 2.5% percentile of summer common dolphin estimates	262
Figure 14-14 Upper 97.5% percentile of summer common dolphin estimates	263
Figure 14-15 Common dolphin 2010-2013 summer density and 1963-2014 OBIS sightings	264
Figure 14-16 CV of summer density estimates for common dolphins	265
Figure 14-17 Common dolphin fall average density estimates	266
Figure 14-18 Lower 2.5% percentile of fall common dolphin estimates	267
Figure 14-19 Upper 97.5% percentile of fall common dolphin estimates	268
Figure 14-20 Common dolphin 2010-2013 fall density and 1963-2014 OBIS sightings	269
Figure 14-21 CV of fall density estimates for common dolphins	270
Figure 14-22 Annual abundance trends for common dolphins in wind energy study areas	272
Figure 15-1 Atlantic spotted dolphin. Credit: NOAA/NEFSC/Kelly Slivka	273
Figure 15-2 Track lines and Atlantic spotted dolphin sightings during 2010 - 2013	274
Figure 15-3 Q-Q plots and detection functions from Atlantic spotted dolphin MRDS analysis	276
Figure 15-4 Atlantic spotted dolphin density related to significant habitat covariates	277
Figure 15-5 Annual abundance trends for Atlantic spotted dolphins for AMAPPS study area.	278
Figure 15-6 Altantic spotted dolphin spring average density estimates	279
Figure 15-7 Lower 2.5% percentile of spring Atlantic spotted dolphin estimates	280
Figure 15-8 Upper 97.5% percentile of spring Atlantic spotted dolphin estimates	281
Figure 15-9 Atlantic spotted dolphin 2010-2013 spring density and 1984-2013 OBIS sighting	S
	282
Figure 15-10 CV of spring density estimates for Atlantic spotted dolphins	283
Figure 15-11 Atlantic spotted dolphin summer average density estimates	284
Figure 15-12 Lower 2.5% percentile of summer Atlantic spotted dolphin estimates	285
Figure 15-13 Upper 97.5% percentile of summer Atlantic spotted dolphin estimates	286
Figure 15-14 Atlantic spotted dolphin 2010-2013 summer density and 1984-2013 OBIS sight	ings
	287
Figure 15-15 CV of summer density estimates for Atlantic spotted dolphins	288
Figure 15-16 Atlantic spotted dolphin fall average density estimates	289
Figure 15-17 Lower 2.5% percentile of fall Atlantic spotted dolphin estimates	290
Figure 15-18 Upper 97.5% percentile of fall Atlantic spotted dolphin estimates	291
Figure 15-19 Atlantic spotted dolphin 2010-2013 fall density and 1984-2013 OBIS sightings	292
Figure 15-20 CV of fall density estimates for Atlantic spotted dolphins	293
Figure 15-21 Annual abundance trends for Atlantic spotted dolphins in wind energy study are	eas
	295
Figure 16-1 Striped dolphin. Credit: NOAA/NEFSC/Rich Pagen	296
Figure 16-2 Track lines and striped dolphin sightings during 2010-2013	297

Figure 16-3 Q-Q plots and detection functions from striped dolphin MRDS analysis	299
Figure 16-4 Striped dolphin density related to significant habitat covariates	300
Figure 16-5 Annual abundance trends for striped dolphins for AMAPPS study area	302
Figure 16-6 Striped dolphin summer average density estimates	303
Figure 16-7 Lower 2.5% percentile of summer striped dolphin estimates	304
Figure 16-8 Upper 97.5% percentile of summer striped dolphin estimates	305
Figure 16-9 Striped dolphin 2010-2013 summer density and 1976-2013 OBIS sightings	306
Figure 16-10 CV of summer density estimates for striped dolphins	307
Figure 16-11 Annual abundance trends for striped dolphins in wind energy study areas	308
Figure 17-1 Common bottlenose dolphin. Credit: NOAA/NEFSC/Danielle Cholewiak	309
Figure 17-2 Track lines and common bottlenose dolphin sightings 2010 - 2013	310
Figure 17-3 Q-Q plots and detection functions from common bottlenose dolphin MRDS and	alysis
Figure 17.4 Common bottleness delphin density related to significant habitat covariates	212
Figure 17-4 Common bottlenose dolphin density related to significant habitat covariates	313
Figure 17-5 Annual abundance trends for common bottlehose dorphins for AWAPPS study	215
Figure 17.6 Common bottleness delphin spring average density estimates	216
Figure 17-0 Common bottlenose dolphin spring average density estimates	217
Figure 17-7 Lower 2.5% percentile of spring common bottlenose dolphin estimates	210
Figure 17-8 Opper 97.5% percentile of spring common bottlenose dolphin estimates Figure 17-9 Common bottlenose dolphin 2010-2013 spring density and 1968-2014 OBIS	516
sightings	319
Figure 17-10 Common bottlenose dolphin spring 2014 density and AMAPPS 2014 tracks a	nd
sightings	320
Figure 17-11 CV of spring denstiv estimates for common bottlenose dolphins	321
Figure 17-12 Common bottlenose dolphin summer average density estimates	322
Figure 17-13 Lower 2.5% percentile of summer common bottlenose dolphin estimates	323
Figure 17-14 Upper 97.5% percentile of summer common bottlenose dolphin estimates	324
Figure 17-15 Common bottlenose dolphin 2010 - 2013 summer density and 1968-2014 OB	IS
sightings	325
Figure 17-16 CV of summer density estimates for common bottlenose dolphins	326
Figure 17-17 Common bottlenose dolphin fall average density estimates	327
Figure 17-18 Lower 2.5% percentile of fall common bottlenose dolphin estimates	328
Figure 17-19 Upper 97.5% percentile of fall common bottlenose dolphin estimates	329
Figure 17-20 Common bottlenose dolphin 2010-2013 fall density and 1968-2014 OBIS sight	ntings
Figure 17.21 CV of fall density estimates for common bottleness delabing	550
Figure 17-21 C v of fail density estimates for common bottlenose dolphin winter average density estimates	227
Figure 17-22 Common bottlenose dolphin winter average density estimates	552
Figure 17-25 Lower 2.5% percentile of winter common bottlenose doipnin estimates	333
rigure 17-24 Upper 97.5% percentile of winter common bottlenose dolphin estimates	354

Figure 17-25 Common bottlenose dolphin 2010-2013 winter density and 1968-2014 OBIS	
sightings	335
Figure 17-26 CV of winter density estimates for common bottlenose dolphins	336
Figure 17-27 Annual abundance trends for common bottlenose dolphins in wind energy stud	ly
areas	338
Figure 18-1 Harbor porpoise. Credit: NOAA/NEFSC/Peter Duley	339
Figure 18-2 Track lines and harbor porpoise sightings during 2010 - 2013	340
Figure 18-3 Q-Q plots and detection functions from harbor porpoise MRDS analysis	342
Figure 18-4 Harbor porpoise spring density related to significant habitat covariates	342
Figure 18-5 Harbor porpoise summer density related to significant habitat covariates	343
Figure 18-6 Harbor porpoise fall density related to significant habitat covariates	344
Figure 18-7 Annual abundance trends for harbor porpoises for AMAPPS study area	346
Figure 18-8 Harbor porpoise spring average density estimates	347
Figure 18-9 Lower 2.5% percentile of spring harbor porpoise estimates	348
Figure 18-10 Upper 97.5% percentile of spring harbor porpoise estimates	349
Figure 18-11 Harbor porpoise 2010-2013 spring density and 2010-2013 OBIS sightings	350
Figure 18-12 CV of spring density estimates for harbor porpoises	351
Figure 18-13 Harbor porpoise summer average density estimates	352
Figure 18-14 Lower 2.5% percentile of summer harbor porpoise estimates	353
Figure 18-15 Upper 97.5% percentile of summer harbor porpoise estimates	354
Figure 18-16 Harbor porpoise 2010-2013 summer density and 2010-2013 OBIS sightings	355
Figure 18-17 CV of summer density estimates for harbor porpoises	356
Figure 18-18 Harbor porpoise fall average density estimates	357
Figure 18-19 Lower 2.5% percentile of fall harbor porpoise estimates	358
Figure 18-20 Upper 97.5% percentile of fall harbor porpoise estimates	359
Figure 18-21 Harbor porpoise 2010-2013 fall density and 2010-2013 OBIS sightings	360
Figure 18-22 CV of fall density estimates for harbor porpoises	361
Figure 18-23 Annual abundance trends for harbor porpoises in wind energy study areas	363
Figure 19-1 Gray seal at-sea. Credit: NOAA/NEFSC/Peter Duley	364
Figure 19-2 Track lines and seals at-sea sightings during 2010 - 2013	365
Figure 19-3 Q-Q plots and detection functions from seals at-sea MRDS analysis	367
Figure 19-4 Seals at-sea density related to significant habitat covariates	368
Figure 19-5 Annual abundance trends for seals at-sea for AMAPPS study area	369
Figure 19-6 Seals at-sea spring average density estimates	370
Figure 19-7 Lower 2.5% percentile of spring seals at-sea estimates	371
Figure 19-8 Upper 97.5% percentile of spring seals at-sea estimates	372
Figure 19-9 Seals at-sea 2010-2013 spring density and 1995-2015 OBIS sightings	373
Figure 19-10 CV of spring density estimates for seals at-sea	374
Figure 19-11 Seals at-sea summer average density estimates	375
Figure 19-12 Lower 2.5% percentile of summer seals at-sea estimates	376

Figure 19-13 Upper 97.5% percentile of summer seals at-sea estimates	377
Figure 19-14 Seals at-sea 2010-2013 summer density and 1995-2015 OBIS sightings	378
Figure 19-15 CV of summer density estimates for seals at-sea	379
Figure 19-16 Seals at-sea fall average density estimates	380
Figure 19-17 Lower 2.5% percentile of fall seals at-sea estimates	381
Figure 19-18 Upper 97.5% percentile of fall seals at-sea estimates	382
Figure 19-19 Seals at-sea 2010-2013 fall density and 1995-2015 OBIS sightings	383
Figure 19-20 CV of fall density estimates for seals at-sea	384
Figure 19-21 Annual abundance trends for seals at-sea in wind energy study areas	386

1 Study Area

Figure 1-1 AMAPPS study area and Massachusetts to North Carolina wind energy study areas As defined by BOEM (December 2015). This study proposed a 10km buffer zone surrounding the wind energy areas for the abundance estimates.

Figure 1-2 AMAPPS study area and North Carolina to Florida wind energy study areas As defined by BOEM (December 2015). This study proposed a 10km buffer zone surrounding the wind energy areas for the abundance estimates.

2 Humpback Whale (Megaptera novaeangliae)

Figure 2-1 Humpback whale. Credit: NOAA/NEFSC/Kelly Slivka Image collected under MMPA research permit #775-1875.

2.1 Data Collection

Figure 2-2 Track lines and humpback whale sightings during 2010 - 2013

Platform	Effort (km)		Common name	Species	Total sightings / Total animals		mals			
	Spring	Summer	Fall	Winter			Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Humpback whale	Megaptera novaeangliae	0/0	57/83	0/0	0/0
NE Aerial	7,502	10,468	11,038	3,573	-	-	13/16	28/35	29/43	1/1
SE Shipboard	0	8,537	2,093	0	-	-	0/0	1/1	0/0	0/0
SE Aerial	17,978	16,835	11,818	6,007	-	-	6/7	0/0	2/2	3/3

Table 2-1 Research effort 2010 - 2013 and humpback whale sightings

2.2 Mark-Recapture Distance Sampling Analysis

Table 2-2 Parameter estimates from humpback whale (HUWH) MRDS analysisHR=Hazard Rate, HN= Half Normal, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p- value	K-S p- value	CvM p- value
SE-aerial group 1	1	CBWH,FIWH,HUWH MIWH,RIWH,SPWH	Distance*observer	Distance+sea	400	HR	0.898	0.091	0.318	0.659	0.671
	2		-	Distance+sea	562	HN	-	-	0.221	0.737	0.758
NE-aerial group 1	1	CBWH, FISE,FIWH, HUWH, MIWH, RIWH,SEWH,SPWH UNWH	Distance	Distance+time of day	900	HR	0.503	0.168	0.369	0.992	0.985
	2		-	Distance+glare	5240	HR	-	-	0.245	0.832	0.905
SE- shipboard group 1	-	FIWH,HUWH, RIWH,SPWH	Distance*observer + sea	Distance+sea	8840	HN	0.472	0.228	0.326	0.122	0.137
NE- shipboard group 2	-	HUWH	Distance	Distance+cue	7600	HR	0.361	0.315	0.159	0.993	0.994

Figure 2-3 Q-Q plots and detection functions from humpback whale MRDS analysis Group 1 aerial southeast region (a,b), group 1 aerial northeast region (c,d), group 2 shipboard northeast region (e,f) and group 1 shipboard southeast region (g,h).

2.3 Generalized Additive Model Analysis

Approximate significance of smooth terms								
	edf	Ref.df	F	p-value	std.dev			
s(chl)	0.7331	4	2.167	0.000533	4.68E-04	***		
s(sst)	1.125	4	38.245	< 2e-16	1.30E-02	***		
s(pp)	2.9421	4	25.605	< 2e-16	4.43E-05	***		
s(dist125)	0.965	4	22.514	< 2e-16	8.86E-09	***		
s(lat)	3.2378	4	34.42	< 2e-16	3.78E-01	***		
Scale	-	-	-	-	9.70E-01			
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1								
Estimated degrees of freedom : $Total = 10$								

Table 2-3 Habitat mod	el output f	for hump	back whales
-----------------------	-------------	----------	-------------

 R^2 (adjusted) = 0.00524 Deviance explained = 31.9%

REML = 502.95 Scale estimate = 0.21056 sample size = 11276

Figure 2-4 Humpback whale density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.277	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	91.9	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.07	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.003	Excellent

Table 2-4 Diagnostic statistics from humpback whale habitat model

The cutoff values are taken from Kinlan et al. 2012

Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50% MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

2.4 Abundance Estimates for AMAPPS Study Area

Table 2-5 Humpback whale average abundance estimates for AMAPPS study area Availability bias correction: aerial 0.649, CV=0.185; shipboard 1, CV=0.0.

Season	Abundance	CV	95% Confidence Interval
Spring (March- May)	1,510	0.294	859 - 2,655
Summer (June-August)	1,246	0.177	883 - 1,758
Fall (September-November)	1,399	0.172	1,001 – 1,955

Figure 2-5 Annual abundance trends for humpback whales for AMAPPS study area

Figure 2-6 Humpback whale spring average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 2-7 Lower 2.5% percentile of spring humpback whale estimates

Figure 2-8 Upper 97.5% percentile of spring humpback whale estimates

Figure 2-9 Humpback whale 2010-2013 spring density and 1970-2014 OBIS sightings pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 2-10 Humpback whale spring 2014 density and AMAPPS 2014 tracks and sightings These sightings were not used to develop the density-habitat model.

Figure 2-11 CV of spring density estimates for humpback whales

Figure 2-12 Humpback whale summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 2-13 Lower 2.5% percentile of summer humpback whale estimates

Figure 2-14 Upper 97.5% percentile of summer humpback whale estimates

Figure 2-15 Humpback whale 2010-2013 summer density and 1970-2014 OBIS sightings pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 2-16 CV of summer density estimates for humpback whales

Figure 2-17 Humpback whale fall average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 2-18 Lower 2.5% percentile of fall humpback whale estimates

Figure 2-19 Upper 97.5% percentile of fall humpback whale estimates

Figure 2-20 Humpback whale 2010-2013 fall density and 1970-2014 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 2-21 CV of fall density estimates for humpback whales

2.6 Wind Energy Study Areas

Season	Area	Abundance*	CV	95% Confidence Interval
Spring	Rhode Island/ Massachusetts	37	0.128	29 - 47
(March-May)	New York	5	0.144	4 - 6
	New Jersey	9	0.136	7 - 12
	Delaware/ Maryland	6	0.121	5 - 8
	Virginia	3	0.128	2 - 4
	North Carolina	4	0.14	3 - 6
	South Carolina/ North Carolina	1	0.251	1 - 1
	Georgia	0	0.398	0 - 0
	Florida	N/A	-	-
Summer	Rhode Island/ Massachusetts	22	0.103	18 - 27
(June-August)	New York	1	0.155	1 - 2
	New Jersey	2	0.182	1 - 2
	Delaware/ Maryland	1	0.144	1 - 2
	Virginia	1	0.13	0 - 1
	North Carolina	1	0.143	1 - 1
	South Carolina/ North Carolina	0	0.236	0 - 0
	Georgia	0	0.331	0 - 0
	Florida	N/A	-	-
Fall	Rhode Island/ Massachusetts	33	0.096	27 - 39
(September- November)	New York	3	0.137	2 - 4
	New Jersey	5	0.149	4 - 7
	Delaware/ Maryland	3	0.139	2 - 4
	Virginia	1	0.139	1 - 2
	North Carolina	2	0.144	1 - 2
	South Carolina/ North Carolina	0	0.249	0 - 1
	Georgia	0	0.448	0 - 0
	Florida	N/A	-	-

Table 2-6 Humpback whale average abundance estimates for wind energy study areasAvailability bias correction: aerial 0.649, CV= 0.185; shipboard 1.0, CV= 0.0.

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value as estimated by the habitat model. N/A indicates it was assumed to be in the True 0 modeled area.

Figure 2-22 Annual abundance trends for humpback whales in wind energy study areas

3 Fin Whale (Balaenoptera physalus)

Figure 3-1 Fin whale. Credit: NOAA/NEFSC/Brenda Rone Image collected under MMPA research Permit #775-1600.

3.1 Data Collection

Figure 3-2 Track lines and fin whale sightings during 2010 - 2013

Platform		Effor	t (km)		Common name	Species	Tota	l sightings /	Total ani	mals
	Spring	Summer	Fall	Winter	_		Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Fin whale	Balaenoptera physalus	0	91/127	0	0
NE Aerial	7,502	10,468	11,038	3,573	-	-	23/34	17/17	25/26	1/1
SE Shipboard	0	8,537	2,093	0	-	-	0	5/8	3/9	0
SE Aerial	17,978	16,835	11,818	6,007	-	-	8/11	4/5	6/10	3/3

Table 3-1 Research effort 2010 - 2013 and fin whale sightings

3.2 Mark-Recapture Distance Sampling Analysis

Table 3-2 Parameter estimates from fin whale (FIWH) MRDS analysisHR=Hazard Rate, HN= Half Normal, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p- value	CvM p- value
SE-aerial group 1	1	CBWH,FIWH, HUWH, MIWH,RIWH,SPWH	Distance*observer	Distance+sea	400	HR	0.898	0.091	0.318	0.659	0.671
	2		-	Distance+sea	562	HN	-	-	0.221	0.737	0.758
NE-aerial group 1	1	CBWH, FISE,FIWH, HUWH,MIWH,RIWH SEWH, SPWH UNBW	Distance	Distance+time of day	900	HR	0.503	0.168	0.369	0.992	0.985
	2		-	Distance+glare	5240	HR	-	-	0.245	0.832	0.905
SE- shipboard group 1	-	FIWH,HUWH, RIWH,SPWH	Distance*observer + sea	Distance+sea	8840	HN	0.472	0.228	0.326	0.122	0.137
NE- shipboard group 1	-	CBWH, FISE,FIWH, HUWH,MIWH, RIWH, SEWH,SPWH,UNBW	Distance	Distance+glare	4000	HR	0.513	0.136	0.220	0.991	0.979

Figure 3-3 Q-Q plots and detection functions from fin whale MRDS analysis Group 1 aerial southeast region (a,b), group 1 aerial northeast region (c,d), group 1 shipboard northeast region (e,f) and group 1 shipboard southeast region (g,h).

3.3 Generalized Additive Model Analysis

	Ар	_					
	edf	Ref.df	F	p-value	std.dev		
s(chl)	0.7927	4	3.752	1.31E-05	1.28E-03	***	
s(btemp)	3.0314	4	31.781	< 2e-16	2.04E-01	***	
s(dist125)	0.9924	4	45.547	< 2e-16	1.27E-08	***	
s(lat)	2.5743	4	41.771	< 2e-16	3.80E-01	***	
Scale	-	-	-	-	1.18E+00		
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							
Estimated degrees of freedom: $Total = 8.39$							
R^2 (adjusted) = 0.017 Deviance explained = 34.7%							

REML = 616.2 Scale estimate = 0.27135 sample size = 11644

Figure 3-4 Fin whale density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.117	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	88.72	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.128	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.006	Excellent

Table 3-4 Diagnostic statistics from fin whale habitat model

The cutoff values are taken from Kinlan et al. 2012

Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50% MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

3.4 Abundance Estimates for AMAPPS Study Area

Table 3-5 Fin whale average abundance estimates for AMAPPS study area
Availability bias correction: aerial 0.374, CV=0.336; shipboard 1, CV=0.0.

Season	Abundance	CV	95% Confidence Interval
Spring (March- May)	3,817	0.217	2,508 - 5,809
Summer (June-August)	4,718	0.129	3,667 - 6,070
Fall (September-November)	4,514	0.123	3,545 - 5,742

Figure 3-5 Annual abundance trends for fin whales for AMAPPS study area

Figure 3-6 Fin whale spring average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 3-7 Lower 2.5% percentile of spring fin whale estimates

Figure 3-8 Upper 97.5% percentile of spring fin whale estimates

Figure 3-9 Fin whale 2010-2013 spring density and 1970-2014 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 3-10 Fin whale spring 2014 density and AMAPPS 2014 tracks and sightings These sightings were not used to develop the density-habitat model.

Figure 3-11 CV of spring density estimates for fin whales

Figure 3-12 Fin whale summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 3-13 Lower 2.5% percentile of summer fin whale estimates

Figure 3-14 Upper 97.5% percentile of summer fin whale estimates

Figure 3-15 Fin whale 2010-2013 summer density and 1970-2014 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 3-16 CV of summer density estimates for fin whales

Figure 3-17 Fin whale fall average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 3-18 Lower 2.5% percentile of fall fin whale estimates

Figure 3-19 Upper 97.5% percentile of fall fin whale estimates

Figure 3-20 Fin whale 2010-2013 fall density and 1970-2014 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 3-21 CV of fall density estimates for fin whales

3.6 Wind Energy Study Areas

Season	Area	Abundance*	CV	95% Confidence Interval
Spring	Rhode Island/ Massachusetts	48	0.094	40 - 58
(March-May)	New York	5	0.126	4 - 6
	New Jersey	8	0.129	6 - 11
	Delaware/ Maryland	6	0.109	5 - 8
	Virginia	3	0.119	2 - 4
	North Carolina	5	0.13	4 - 7
	South Carolina/ North Carolina	0	0.39	0 - 0
	Georgia	0	0.593	0 - 0
	Florida	0	1.685	0 - 0
Summer	Rhode Island/ Massachusetts	50	0.086	43 - 60
(June-August)	New York	3	0.143	2 - 3
	New Jersey	1	0.221	1 - 2
	Delaware/ Maryland	1	0.219	1 - 2
	Virginia	1	0.256	0 - 1
	North Carolina	1	0.201	1 - 2
	South Carolina/ North Carolina	0	0.51	0 - 0
	Georgia	0	0.716	0 - 0
	Florida	0	1.629	0 - 0
Fall	Rhode Island/ Massachusetts	34	0.091	28 - 40
(September- November)	New York	2	0.151	1 - 2
	New Jersey	3	0.171	2 - 4
	Delaware/ Maryland	2	0.152	1 - 2
	Virginia	1	0.166	1 - 1
	North Carolina	2	0.155	1 - 2
	South Carolina/ North Carolina	0	0.403	0 - 0
	Georgia	0	0.542	0 - 0
	Florida	0	1.573	0 - 0

Table 3-6 Fin whale average abundance estimates for wind energy study areasAvailability bias correction: aerial 0.374, CV=0.336; shipboard 1.0, CV=0.0.

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value as estimated by the habitat model.

Figure 3-22 Annual abundance trends for fin whales in wind energy study areas
4 Sei Whale (Balaenoptera borealis)

Figure 4-1 Sei whale. Credit: NOAA/NEFSC/Christin Khan Image collected under MMPA Research permit #17355.

4.1 Data Collection

Figure 4-2 Track lines and sei whale sightings during 2010 - 2013

Platform	Effort (km)				Common name	Species	Total sightings / Total animals			imals
	Spring	Summer	Fall	Winter	-		Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Sei whale	Balaenoptera borealis	0/0	9/10	0/0	0/0
NE Aerial	7,502	10,468	11,038	3,573	-	-	5/6	2/2	3/9	3/6
SE Shipboard	0	8,537	2,093	0	-	-	0/0	0/0	0/0	0/0
SE Aerial	17,978	16,835	11,818	6,007	-	-	0/0	0/0	0/0	0/0

Table 4-1 Research effort 2010 - 2013 and sei whale sightings

4.2 Mark-Recapture Distance Sampling Analysis

Table 4-2 Parameter estimates from sei whale (SEWH) MRDS analysisHR=Hazard Rate, HN= Half Normal, codes are explained in main text.

ID	Step	Species	Mark- Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p-value	CvM p-value
NE-aerial group 1	1	CBWH,FISE,FIWH, HUWH,MIWH,RIWH, SEWH, SPWH, UNWH,	Distance	Distance+time of day	900	HR	0.503	0.168	0.369	0.992	0.985
	2		-	Distance+glare	5240	HR	-	-	0.245	0.832	0.905
NE-shipboard group 1	-	CBWH,FISE,FIWH, HUWH,MIWH,RIWH, SEWH,SPWH,UNBW,	Distance	Distance+glare	4000	HR	0.513	0.136	0.220	0.991	0.979

Figure 4-3 Q-Q plots and detection functions from sei whale MRDS analysis Group 1 aerial northeast region (a,b) and group 1 shipboard northeast region (c,d).

4.3 Generalized Additive Model Analysis

	Approximate significance of smooth terms						
	edf	Ref.df	F	p-value	std.dev	_	
s(chl)	0.8478	4	17.45	<2e-16	3.42E-03	***	
s(sst)	1.1154	4	98.17	<2e-16	2.13E-02	***	
s(pic)	0.792	4	14.35	<2e-16	1.03E+03	***	
s(mld)	0.8068	4	13.7	<2e-16	6.48E-05	***	
s(dist2shore)	3.6234	4	66.84	<2e-16	2.37E-02	***	
s(dist125)	0.8957	4	27.65	<2e-16	1.44E-08	***	
s(lat)	0.8739	4	16.89	<2e-16	3.31E-02	***	
Scale					1.46E+00		
Signif. codes:	0 '***' 0.00	0.01 (**)	·*' 0.05 '.'	0.1 ' ' 1			
Estimated degr	rees of freed	om: Total =	9.96				
R ² (adjusted) =	= 0.0328 De	eviance expl	ained $= 57$.	8%			
REML = 223.5	56 Scale esti	imate $= 0.14$	001 samp	le size $= 1185$	1		

Table 4-3 Habitat model output for sei whales

Figure 4-4 Sei whale density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Table 4-4 Diagnostic	statistics from	sei whale habitat	t model
----------------------	-----------------	-------------------	---------

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.2391	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	87.17	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.07	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.003	Excellent

The cutoff values are taken from Kinlan et al. (2012)

Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

4.4 Abundance Estimates for AMAPPS Study Area

Season	Abundance	CV	95% Confidence Interval
Spring (March- May)	6,292	1.015	1,209 - 32,733
Summer (June-August)	1,872	0.421	849 - 4,129
Fall (September-November)	2,489	0.488	1,006 - 6,158

Table 4-5 Sei whale average abundance estimates for AMAPPS study areaAvailability bias correction: aerial 0.417, CV=0.517; shipboard 1, CV= 0.0.

Figure 4-5 Annual abundance trends for sei whales for AMAPPS study area

4.5 Seasonal Prediction Maps

Figure 4-6 Sei whale spring average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 4-7 Lower 2.5% percentile of spring sei whale estimates

Figure 4-8 Upper 97.5% percentile of spring sei whale estimates

Figure 4-9 Sei whale 2010-2013 spring density and 1968-2013 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 4-10 CV of spring density estimates for sei whales

Figure 4-11 Sei whale summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 4-12 Lower 2.5% percentile of summer sei whale estimates

Figure 4-13 Upper 97.5% percentile of summer sei whale estimates

Figure 4-14 Sei whale 2010-2013 summer density and 1968-2013 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 4-15 CV of summer density estimates for sei whales

Figure 4-16 Sei whale fall average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 4-17 Lower 2.5% percentile of fall sei whale estimates

Figure 4-18 Upper 97.5% percentile of fall sei whale estimates

Figure 4-19 Sei whale 2010-2013 fall density and 1968-2013 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 4-20 CV of fall density estimates for sei whales

4.6 Wind Energy Study Areas

Season	Area	Abundance*	CV	95% Confidence Interval
Spring	Rhode Island/ Massachusetts	0	0.249	0 - 1
(March-May)	New York	0	0.521	0 - 0
	New Jersey	0	0.608	0 - 0
	Delaware/ Maryland	0	0.566	0 - 0
	Virginia	0	0.343	0 - 0
	North Carolina	0	0.283	0 - 0
	South Carolina/ North Carolina	0	0.227	0 - 0
	Georgia	0	1.173	0 - 0
	Florida	0	0.742	0 - 0
Summer	Rhode Island/ Massachusetts	0	0.201	0 - 0
(June-August)	New York	0	0.603	0 - 0
	New Jersey	0	0.712	0 - 0
	Delaware/ Maryland	0	0.567	0 - 0
	Virginia	0	0.268	0 - 0
	North Carolina	0	0.223	0 - 0
	South Carolina/ North Carolina	0	0.238	0 - 0
	Georgia	0	1.021	0 - 0
	Florida	0	0.725	0 - 0
Fall	Rhode Island/ Massachusetts	0	0.174	0 - 0
(September- November)	New York	0	0.438	0 - 0
	New Jersey	0	0.572	0 - 0
	Delaware/ Maryland	0	0.468	0 - 0
	Virginia	0	0.258	0 - 0
	North Carolina	0	0.188	0 - 0
	South Carolina/ North Carolina	0	0.218	0 - 0
	Georgia	0	1.607	0 - 0
	Florida	0	0.665	0 - 0

Table 4-6 Sei whale average abundance estimates for wind energy study areasAvailability bias correction: aerial 0.417, CV=0.517; shipboard 1.0, CV= 0.0.

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value as estimated by the habitat model.

Figure 4-21 Annual abundance trends for sei whales in wind energy study areas

5 Minke Whale (Balaenoptera acutorostrata)

Figure 5-1 Minke whale: Credit: NOAA/NEFSC/Cynthia Christman Image collected under MMPA Research permit #775-1875.

5.1 Data Collection

Platform		Effort	: (km)		Common name	Species	Tota	l sightings /	Total an	imals
	Spring	Summer	Fall	Winter	-		Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Minke whale	Balaenoptera acutorostrata	0/0	29/29	0/0	0/0
NE Aerial	7,502	10,468	11,038	3,573	-	-	7/7	23/23	20/31	1/1
SE Shipboard	0	8,537	2,093	0	-	-	0/0	0/0	0/0	0/0
SE Aerial	17,978	16,835	11,818	6,007	-	-	5/6	0/0	3/3	0/0

Table 5-1 Research effort 2010 - 2013 and minke whale sightings

5.2 Mark-Recapture Distance Sampling Analysis

Table 5-2 Parameter estimates from minke whale (MIWH) MRDS analysisHR=Hazard Rate, HN= Half Normal, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p-value	CvM p-value
SE-aerial group 1	1	CBWH,FIWH,HUWH, MIWH, RIWH,SPWH	Distance*observer	Distance+sea	400	HR	0.898	0.091	0.318	0.659	0.671
	2		-	Distance+sea	562	HN	-	-	0.221	0.737	0.758
NE-aerial group 1	1	CBWH,FISE,FIWH, MIWH,RIWH,SEWH, SPWH,UNBW	Distance	Distance+time of day	900	HR	0.503	0.168	0.369	0.992	0.985
	2		-	Distance+glare	5240	HR	-	-	0.245	0.832	0.905
SE-shipboard group 1	-	FIWH,HUWH,RIWH, SPWH	Distance*observer+ sea	Distance+sea	8840	HN	0.472	0.228	0.326	0.122	0.137
NE-shipboard group 1	-	CBWH,FISE,FIWH, HUWH,MIWH,RIWH, SEWH,SPWH,UNBW	Distance	Distance+glare	4000	HR	0.513	0.136	0.220	0.991	0.979

Figure 5-3 Q-Q plots and detection functions from minke whale MRDS analysis Group 1 aerial southeast region (a,b), group 1 aerial northeast region (c,d), group 1 shipboard northeast region (e,f) and group 1 shipboard southeast region (g,h).

5.3 Generalized Additive Model Analysis

	I					
	edf	Ref.df	F	p-value	std.dev	
s(sst)	1.1527	4	28.36	< 2e-16	2.02E-02	***
s(poc)	0.8877	4	11.75	9.90E-14	4.12E-06	***
s(pp)	3.3867	4	46.38	< 2e-16	7.09E-05	***
s(dist2shore)	0.9733	4	23.47	< 2e-16	2.22E-04	***
s(dist125)	0.9314	4	19.24	< 2e-16	1.01E-08	***
s(lat)	2.2424	4	22.85	< 2e-16	6.78E-01	***
Scale	-	-	-	-	1.46E+00	

Table 5-3 Habitat mode	l output for	minke whales
------------------------	--------------	--------------

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated degrees of freedom: Total = 10.57

 R^2 (adjusted) = 0.0103 Deviance explained = 39.9%

REML = 333.3 Scale estimate. = 0.3096 sample size = 11772

Figure 5-4 Minke whale density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.5	Excellent
MAPE	Mean absolute percentage error	Non-zero density	94.59	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.088	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.006	Excellent

Table 5-4 Diagnostic statistics from minke whale habitat model

The cutoff values are taken from Kinlan et al. 2012 Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3 MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50% MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

5.4 Abundance Estimates for AMAPPS Study Area

Season	Abundance	CV	95% Confidence Interval
Spring (March- May)	1,484	0.578	518 - 4,251
Summer (June-August)	2,834	0.247	1,760 – 4,563
Fall (September-November)	2,829	0.255	1,729 – 4,630

Table 5-5 Minke whale average abundance estimates for AMAPPS study area Availability bias correction: aerial 0.307, CV=0.397; shipboard 1, CV= 0.0.

Figure 5-5 Annual abundance trends for minke whales for AMAPPS study area

5.5 Seasonal Prediction Maps

Figure 5-6 Minke whale spring average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 5-7 Lower 2.5% percentile of spring minke whale estimates

Figure 5-8 Upper 97.5% percentile of spring minke whale estimates

Figure 5-9 Minke whale 2010-2013 spring density and 1974-2014 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 5-10 CV of spring density estimates for minke whales

Figure 5-11 Minke whale summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 5-12 Lower 95% percentile of summer minke whale estimates

Figure 5-13 Upper 97.5% percentile of summer minke whale estimates

Figure 5-14 Minke whale 2010-2013 summer density and 1974-2014 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 5-15 CV of summer density estimates for minke whales

Figure 5-16 Minke whale fall average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 5-17 Lower 2.5% percentile of fall minke whale estimates

Figure 5-18 Upper 97.5% percentile of fall minke whale estimates

Figure 5-19 Minke whale 2010-2013 fall density and 1974-2014 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 5-20 CV of fall density estimates for minke whales

5.6 Wind Energy Study Areas

Season	Area	Abundance*	CV	95% Confidence Interval
Spring	Rhode Island/ Massachusetts	62	0.196	42 - 90
(March-May)	New York	9	0.188	6 - 13
	New Jersey	18	0.18	13 - 25
	Delaware/ Maryland	11	0.156	8 - 16
	Virginia	3	0.186	2 - 5
	North Carolina	4	0.229	3 - 7
	South Carolina/ North Carolina	0	0.848	0 - 0
	Georgia	0	1.749	0 - 0
	Florida	0	5.477	0 - 0
Summer	Rhode Island/ Massachusetts	83	0.118	65 - 104
(June-August)	New York	6	0.178	4 - 8
	New Jersey	8	0.203	5 - 11
	Delaware/ Maryland	5	0.166	3 - 6
	Virginia	1	0.179	1 - 2
	North Carolina	1	0.24	1 - 2
	South Carolina/ North Carolina	0	0.836	0 - 0
	Georgia	0	1.458	0 - 0
	Florida	0	5.642	0 - 0
Fall	Rhode Island/ Massachusetts	97	0.109	78 - 120
(September- November)	New York	11	0.15	8 - 15
	New Jersey	17	0.164	13 - 24
	Delaware/ Maryland	8	0.16	6 - 12
	Virginia	2	0.201	1 - 3
	North Carolina	2	0.24	1 - 3
	South Carolina/ North Carolina	0	0.998	0 - 0
	Georgia	0	2.083	0 - 0
	Florida	0	5.528	0 - 0

Table 5-6 Minke whale average abundance estimates for wind energy study areasAvailability bias correction: aerial 0.307, CV=0.397; shipboard 1.0, CV=0.0.

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value as estimated by the habitat model.

Figure 5-21 Annual abundance trends for minke whales in wind energy study areas

6 Sperm Whale (*Physeter macrocephalus*)

Figure 6-1 Sperm whale. Credit: NOAA/NEF NEFSC/Christin Khan Image collected under MMPA Research permit #775-1875.

6.1 Data Collection

Figure 6-2 Track lines and sperm whale sightings during 2010 - 2013

Platform	Effort (km)		Common name	Species	Total sightings / Total animals		imals			
	Spring	Summer	Fall	Winter	-		Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Sperm whale	Physeter macrocephalus	0/0	138/208	0/0	0/0
NE Aerial	7,502	10,468	11,038	3,573	-	-	3/3	3/6	4/4	0/0
SE Shipboard	0	8,537	2,093	0	-	-	0/0	52/126	13/42	0/0
SE Aerial	17,978	16,835	11,818	6,007	-	-	6/6	2/2	0/0	0/0

Table 6-1 Research effort 2010 - 2013 and sperm whale sightings

6.2 Mark-Recapture Distance Sampling Analysis

Table 6-2 Parameter estimates from sperm whale (SPWH) MRDS analysisHR=Hazard Rate, HN= Half Normal, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p- value	K-S p-value	CvM p-value
SE - aerial group 1	1	CBWH,FIWH,HU WH,MIWH,RIWH, SPWH	Distance*observer	Distance+sea	400	HR	0.898	0.091	0.318	0.659	0.671
	2		-	Distance+sea	562	HN	-	-	0.221	0.737	0.758
NE - aerial group 1	1	CBWH,FISE,FIWH, HUWH,MIWH, RIWH,SEWH, SPWH, UNBW	Distance	Distance+time of day	900	HR	0.503	0.168	0.369	0.992	0.985
	2		-	Distance+glare	5240	HR	-	-	0.245	0.832	0.905
SE - shipboard group 1	-	FIWH,HUWH, RIWH,SPWH	Distance*observer+ sea	Distance+sea	8840	HN	0.472	0.228	0.326	0.122	0.137
NE - shipboard group 3	-	SPWH	Distance*observer	Distance	7600	HR	0.605	0.131	0.936	0.940	0.969

Figure 6-3 Q-Q plots and detection functions from sperm whale MRDS analysis Group 1 aerial southeast region (a,b), group 1 aerial northeast region (c,d), group 3 shipboard northeast region (e,f) and group 1 shipboard southeast region (g,h).

6.3 Generalized Additive Model Analysis

	Approximate significance of smooth terms						
	edf	Ref.df	F	p-value	std.dev		
s(chl)	0.9095	4	10.17	2.11E-11	4.61E-03	***	
s(sst)	3.8512	4	79.98	< 2e-16	2.83E-01	***	
s(pp)	2.8644	4	58.22	< 2e-16	5.03E-05	***	
s(slope)	3.0721	4	110.09	< 2e-16	3.06E-01	***	
s(btemp)	3.1548	4	44.83	< 2e-16	3.82E-01	***	
Scale	-	-	-	-	7.49E-01		
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							
Estimated degrees of freedom: Total -14.85							

Table 6-3 Habitat model output for sperm whales

Estimated degrees of freedom: Total 14.85

 R^2 (adjusted) = 0.0249 Deviance explained = 33.5%

REML = 891.68 Scale estimate = 0.13065 sample size = 11247

Figure 6-4 Sperm whale density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.227	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	82.01	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.157	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.05	Excellent

Table 6-4 Diagnostic statistics from sperm whale habitat model

The cutoff values are taken from Kinlan et al. 2012

Rank R: Poor= x<0.05; Fair to good = 0.05<=x<0.3; Excellent= x>0.3MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

6.4 Abundance Estimates for AMAPPS Study Area

Season	Abundance	CV	95% Confidence Interval
Spring (March- May)	4,766	0.449	2,058 - 11,039
Summer (June-August)	3,663	0.143	2,772 - 4,841
Fall (September-November)	3,557	0.147	2,669 – 4,741

Table 6-5 Sperm whale average abundance estimates for AMAPS study area Availability bias correction: aerial 0.145, CV=0.005; shipboard 0.613, CV= 0.247.

Figure 6-5 Annual abundance trends for sperm whales in wind energy study areas

6.5 Seasonal Prediction Maps

Figure 6-6 Sperm whale spring average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 6-7 Lower 95% percentile of spring sperm whale estimates

Figure 6-8 Upper 97.5% percentile of spring sperm whale estimates

Figure 6-9 Sperm whale 2010-2013 spring density and 1970-2013 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 6-10 Sperm whale spring 2014 density and AMAPPS 2014 tracks and sightings These sightings were not used to develop the density-habitat model.

Figure 6-11 CV of spring estimates for sperm whales

Figure 6-12 Sperm whale summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 6-13 Lower 2.5% percentile of summer sperm whale estimates

Figure 6-14 Upper 97.5% percentile of summer sperm whale estimates

Figure 6-15 Sperm whale 2010-2013 summer density and 1970-2013 OBIS sightings Pink circles (Halpin *et al.* 2009), and passive acoustic detections from the 2013 NEFSC towed hydrophone array survey (white circles). These sightings were not used to develop the density-habitat model.

Figure 6-16 CV of summer density estimates for sperm whales

Figure 6-17 Sperm whale fall average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 6-18 Lower 2.5% percentile of fall sperm whale estimates

Figure 6-19 Upper 97.5% percentile of fall sperm whale estimates

Figure 6-20 Sperm whale 2010-2013 fall density and 1970-2013 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 6-21 CV of fall density estimates for sperm whales

6.6 Wind Energy Study Areas

Table 6-6 Sperm whale average abunda	nce estimates for AMAPPS study area
--------------------------------------	-------------------------------------

Availability bias correction: aerial 0.145, CV=0.005; shipboard 0.613, CV= 0.247.

Season	Area	Abundance*	CV	95% Confidence
				Interval
Spring	Rhode Island/ Massachusetts	11	0.145	8 - 14
(March-May)	New York	3	0.198	2 - 4
	New Jersey	10	0.147	8 - 14
	Delaware/ Maryland	7	0.133	5 - 9
	Virginia	7	0.129	5 - 9
	North Carolina	15	0.136	12 - 20
	South Carolina/ North Carolina	6	0.238	4 - 10
	Georgia	1	0.274	0 - 1
	Florida	2	0.104	1 - 2
Summer	Rhode Island/ Massachusetts	15	0.122	12 - 20
(June-August)	New York	2	0.176	1 - 3
	New Jersey	1	0.374	0 - 1
	Delaware/ Maryland	0	0.391	0 - 1
	Virginia	0	0.413	0 - 0
	North Carolina	3	0.13	2 - 3
	South Carolina/ North Carolina	0	0.166	0 - 0
	Georgia	0	2.731	0 - 0
	Florida	2	0.116	1 - 2
Fall	Rhode Island/ Massachusetts	22	0.117	18 - 28
(September- November)	New York	4	0.172	3 - 5
	New Jersey	7	0.185	5 - 10
	Delaware/ Maryland	4	0.204	2 - 5
	Virginia	2	0.185	1 - 3
	North Carolina	4	0.144	3 - 5
	South Carolina/ North Carolina	0	0.329	0 - 1
	Georgia	0	0.514	0 - 0
	Florida	2	0.105	2 - 3

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value as estimated by the habitat model.

Figure 6-22 Annual abundance trends for sperm whales in wind energy study areas
7 Cuvier's Beaked Whale (Ziphius cavirostris)

Figure 7-1 Cuvier's beaked whale. Credit: NOAA/SEFSC Image collected under MMPA Research permit #779-1633.

7.1 Data Collection

Figure 7-2 Track lines and Cuvier's beaked whale sightings during 2010 - 2013

Platform		Effort (km)			Common name	Species	Total sightings / Total animal			imals
	Spring	Summer	Fall	Winter	_		Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Cuvier's beaked whale	Ziphius cavirostris	0/0	101/246	0/0	0/0
NE Aerial	7,502	10,468	11,038	3,573	-	-	1/1	0/0	0/0	0/0
SE Shipboard	0	8,537	2,093	0	-	-	0/0	2/2	5/9	0/0
SE Aerial	17,978	16,835	11,818	6,007	-	-	1/1	0/0	0/0	0/0

Table 7-1 Research effort 2010 - 2013 and Cuvier's beaked whale sightings

7.2 Mark-Recapture Distance Sampling Analysis

Table 7-2 Parameter estimates from Cuvier's beaked whale (CBWH) MRDS analysis

HR=Hazard Rate, HN= Half Normal, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p-value	CvM p-value
NE-shipboard group 4	-	CBWH,DSWH, GBWH,PSWH, SBWH,UNBW, UNKO	Distance +observer	Distance+ swell+ sea	6000	HR	0.554	0.105	0.564	0.457	0.867
SE-shipboard group 2	-	BBWH,CBWH, DSWH, PSWH, UNBW, UNKO	Distance	Distance	8310	HR	0.355	0.403	0.600	0.909	0.918

7.3 Generalized Additive Model Analysis

	Approximate significance of smooth terms								
	edf	Ref.df	F	p-value	std.dev				
s(sst)	0.6001	4	1.189	0.00409	5.77E-03	**			
s(btemp)	0.9606	4	9.169	2.84E-11	6.55E-02	***			
s(depth)	1.1752	4	4.908	1.11E-06	6.74E-06	***			
s(slope)	0.9357	4	10.368	1.76E-11	1.05E-02	***			
s(lat)	1.0479	4	14.662	< 2e-16	3.17E-02	***			
Scale	-	-	-	-	7.28E-01				
Signif. cod	es: 0 '***' (0.001 '**' 0	.01 '*' 0.05	5 '.' 0.1 ' ' 1					
Estimated	degrees of fr	eedom: Tota	al = 9.3						
R ² (adjuste	R^2 (adjusted) = 0.0414 Deviance explained = 34%								
REML = 2	03.91 Scale	estimate =	0.16114 sa	ample size = 23	375				

Table 7-3 Habitat model output for Cuvier's beaked whales

Figure 7-4 Cuvier's beaked whale density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.09	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	86.03	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.190	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.01	Excellent

Table 7-4 Diagnostic statistics from Cuvier's beaked whale habitat model

The cutoff values are taken from Kinlan et al. 2012

Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good = 150%>=x>50%; Excellent= x<=50% MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

7.4 Abundance Estimates for AMAPPS Study Area

Table 7-5 Cuvier's beaked whale average abundance estimates for AMAPPS study area Availability bias correction: aerial 0.142, CV=0.462; shipboard 0.7644, CV= 0.246.

Figure 7-5 Annual abundance trends for Cuvier's beaked whales for AMAPPS study area

7.5 Seasonal Prediction Maps

Figure 7-6 Cuvier's beaked whale summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 7-7 Lower 2.5% percentile of summer Cuvier's beaked whale estimates

Figure 7-8 Upper 97.5% percentile of summer Cuvier's beaked whale estimates

Figure 7-9 Cuvier's beaked whale 2010-2013 summer density and 1970-2013 OBIS sightings Pink circles (Halpin *et al.* 2009), and passive acoustic detections from the 2013-2015 NEFSC towed hydrophone array surveys (white circles). These sightings were not used to develop the densityhabitat model.

Figure 7-10 CV of summer density estimates for Cuvier's beaked whales

7.6 Wind Energy Study Areas

Season	Area	Abundance*	CV	95% Confidence Interval
Summer	Rhode Island/ Massachusetts	N/A	-	-
(June-August)	New York	N/A	-	-
	New Jersey	N/A	-	-
	Delaware/ Maryland	N/A	-	-
	Virginia	N/A	-	-
	North Carolina	0	1.801	0 - 0
	South Carolina/ North Carolina	N/A	-	-
	Georgia	N/A	-	-
	Florida	N/A	-	-

Table 7-6 Cuvier's beaked whale average abundance estimates for wind energy study areas Availability bias correction: aerial 0.142, CV=0.462; shipboard 0.7644, CV= 0.246.

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value as estimated by the habitat model. N/A indicates it was assumed to be in the True 0 modeled area.

Figure 7-11 Annual abundance trends for Cuvier's beaked whales in wind energy study areas

8 Sowerby's Beaked Whale (*Mesoplodon bidens*)

Figure 8-1 Sowerby's beaked whale. Credit: NOAA/NEFSC/Desray Reeb Image collected under MMPA Research permit #17355.

8.1 Data Collection

Figure 8-2 Track lines and Sowerby's beaked whale sightings during 2010 - 2013

Platform		Effort (km)			Common name	Species	Total	Total sightings / Total animals		
	Spring	Summer	Fall	Winter	_		Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Sowerby's beaked whale	Mesoplodon bidens	0/0	27/75	0/0	0/0
NE Aerial	7,502	10,468	11,038	3,573	-	-	0/0	0/0	0/0	0/0
SE Shipboard	0	8,537	2,093	0	-	-	0/0	0/0	0/0	0/0
SE Aerial	17,978	16,835	11,818	6,007	-	-	0/0	0/0	0/0	0/0

Table 8-1 Research effort 2010 - 2013 and Sowerby's beaked whale sightings

8.2 Mark-Recapture Distance Sampling Analysis

Table 8-2 Parameter estimates from Sowerby's beaked whale (SBWH) MRDS analysis

H=Hazard Rate, HN= Half Normal, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p- value	K-S p-value	CvM p-value
NE -shipboard group 4	-	CBWH,DSWH, GBWH,PSWH, SBWH,UNBW, UNKO	Distance+observer	Distance+swell+ sea	6000	HR	0.554	0.105	0.564	0.457	0.867
SE - shipboard group 2	-	BBWH,CBWH, DSWH, PSWH, UNBW, UNKO	Distance	Distance	8310	HR	0.355	0.403	0.600	0.909	0.918

8.3 Generalized Additive Model Analysis

	Α	pproximate	e significan	ce of smooth	terms				
	edf	Ref.df	F	p-value	std.dev				
s(mld)	0.4144	4	1.319	3.15E-04	3.46E-03	***			
s(btemp)	0.8519	4	9.821	8.37E-12	1.19E-02	***			
s(sha)	0.731	4	6.051	3.94E-09	1.65E+00	***			
s(dist1000)	0.9045	4	11.326	2.24E-13	1.15E-08	***			
s(lat)	0.9686	4	30.443	< 2e-16	7.28E-02	***			
Scale	-	-	-	-	8.27E-01				
Signif. codes:	0 '***' 0.0	01 '**' 0.01	·*' 0.05 '.	0.1 ' ' 1					
Estimated deg	Estimated degrees of freedom: $Total = 5.2$								
R^2 (adjusted) = 0.0677 Deviance explained = 41.1%									
REML = 78.4	73 Scale es	timate. $= 0.0$)85096 sar	nple size $= 237$	'5				

Table 8-3 Habitat model output for Sowerby's beaked whales

Figure 8-4 Sowerby's beaked whale density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.378	Excellent
MAPE	Mean absolute percentage error	Non-zero density	92.23	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.127	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.03	Excellent

Table 8-4 Diagnostic statistics from Sowerby's beaked whale model

The cutoff values are taken from Kinlan et al. 2012.

Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3 MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

8.4 Abundance Estimates for AMAPPS Study Area

Seaso	n	Abundance	CV	95% Confidence Interval
Sumn	ner (June-August)	679	0.384	328 - 1,405
	Spring	Summer	Fall	Winter
1000				2011 2012 2013
800 90	-	25		Mean
undanc 600	_			
400 400	_			
500	-			
0	Mar Apr May	Jun Jul Aug Sep	Oct No	v Dec Jan Feb

Table 8-5 Sowerby's beaked whale average abundance estimates for AMAPPS study areaAvailability bias correction: aerial 0.142, CV=0.462; shipboard 0.7644, CV= 0.246.

Figure 8-5 Annual abundance trends for Sowerby's beaked whales for AMAPPS study area

8.5 Seasonal Prediction Maps

Figure 8-6 Sowerby's beaked whale summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 8-7 Lower 2.5% percentile of summer Sowerby's beaked whale estimates

Figure 8-8 Upper 97.5% percentile of summer Sowerby's beaked whale estimates

Figure 8-9 Sowerby's beaked whale 2010-2013 summer density and 1995-2014 OBIS sightings Pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 8-10 CV of summer density estimates for Sowerby's beaked whales

8.6 Wind Energy Study Areas

Season	Area	Abundance*	CV	95% Confidence Interval
Summer	Rhode Island/ Massachusetts	N/A	-	-
(June-August)	New York	N/A	-	-
	New Jersey	N/A	-	-
	Delaware/ Maryland	N/A	-	-
	Virginia	N/A	-	-
	North Carolina	0	0.277	0 - 0
	South Carolina/ North Carolina	N/A	-	-
	Georgia	N/A	-	-
	Florida	N/A	-	-

Table 8-6 Sowerby's beaked whale average abundance estimates for wind energy study areas Availability bias correction: aerial 0.142, CV=0.462; shipboard 0.7644, CV= 0.246.

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value as estimated by the habitat model. N/A indicates it was assumed to be in the True 0 modeled area.

Figure 8-11 Annual abundance trends for Sowerby's beaked whales in wind energy study areas

9 Unidentified Beaked Whales

Figure 9-1 Unidentified beaked whales. Credit: NOAA/NEFSC/Peter Duley Image collected under MMPA Research permit #775-1600.

9.1 Data Collection

Figure 9-2 Track lines and unidentified beaked whale sightings during 2010-2013

Platform	Effort (km)				Common name	Species	Total sightings / Total anim			imals
	Spring	Summer	Fall	Winter	-		Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Unidentified beaked whale	-	0/0	87/230	0/0	0/0
NE Aerial	7,502	10,468	11,038	3,573	-	-	4/8	1/1	3/6	0/0
SE Shipboard	0	8,537	2,093	0	-	-	0/0	22/48	2/5	0/0
SE Aerial	17,978	16,835	11,818	6,007	-	-	0/0	0/0	0/0	0/0

Table 9-1 Research effort 2010 - 2013 and unidentified beaked whale sightings

9.2 Mark-Recapture Distance Sampling Analysis

Table 9-2 Parameter estimates from unidentified beaked whale (UNBW) MRDS analysisHR=Hazard Rate, HN= Half Normal, codes are explained in main text

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p-value	CvM p-value
NE-shipboard group 4	-	CBWH,DSWH, GBWH,PSWH, SBWH,UNBW, UNKO	Distance+observer	Distance+swell + sea	6000	HR	0.554	0.105	0.564	0.457	0.867
SE-shipboard group 2	-	BBWH,CBWH, DSWH, PSWH, UNBW, UNKO	Distance	Distance	8310	HR	0.355	0.403	0.600	0.909	0.918

9.3 Generalized Additive Model Analysis

	Approximate significance of smooth terms						
	edf	Ref.df	F	p-value	std.dev	_	
s(sst)	0.0511	4	0.034	0.0912	1.47E-03		
s(pic)	0.7324	4	1.742	0.001909	2.13E+3	**	
s(depth)	3.3261	4	45.000	< 2e-16	6.64E-05	***	
s(dist1000)	1.8710	4	3.551	0.000112	3.23E-08	***	
s(lat)	3.7158	4	26.096	< 2e-16	3.21E+00	***	
Scale	-	-	-	-	6.90E-01		
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							
Estimated degrees of freedom: $Total = 9.68$							
R^2 (adjusted) = 0.0876 Deviance explained = 38.9%							
REML = 2760.84 Scale estimate = 0.16591 sample size = 2364							

Table 9-3 Habitat model output for unidentified beaked whales

Figure 9-4 Unidentified beaked whale density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.428	Excellent
MAPE	Mean absolute percentage error	Non-zero density	81.19	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.181	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.01	Excellent

Table 9-4 Diagnostic statistics f	from unidentifed	beaked whale	habitat model
-----------------------------------	------------------	--------------	---------------

The cutoff values are taken from Kinlan et al. 2012.

Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3 MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50% MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

9.4 Abundance Estimates for AMAPPS Study Area

Table 9-5 Unidentified beaked whale average abundance estimates for AMAPPS study areaAvailability bias correction: aerial 0.142, CV=0.462; shipboard 0.7644, CV=0.246.

Season	Abundance	CV	95% Confidence Interval
Summer (June-August)	6,987	0.284	4,051 - 12,051

Figure 9-5 Annual abundance trends for unidentified beaked whales for AMAPPS study area

9.5 Seasonal Prediction Maps

Figure 9-6 Unidentified beaked whale summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 9-7 Lower 2.5% percentile of summer unidentified beaked whale estimates

Figure 9-8 Upper 97.5% percentile of summer unidentified beaked whale estimates

Figure 9-9 Unidentified beaked whale 2010-2013 summer density and 1970-2013 OBIS sightings

Pink circles (Halpin et al. 2009), and passive acoustic detections from the 2013-2015 NEFSC towed hydrophone array surveys (white circles). These sightings were not used to develop the density-habitat model.

Figure 9-10 CV of summer density estimates for unidentified beaked whales

9.6 Wind Energy Study Areas

Table 9-6 Unidentified beaked whale average abundance estimates for wind energy study areas

Season	Area	Abundance*	CV	95% Confidence Interval
Summer	Rhode Island/ Massachusetts	N/A	-	-
(June-August)	New York	N/A	-	-
	New Jersey	N/A	-	-
	Delaware/ Maryland	N/A	-	-
	Virginia	N/A	-	-
	North Carolina	0	0.346	0 - 0
	South Carolina/ North Carolina	N/A	-	-
	Georgia	N/A	-	-
	Florida	N/A	-	-

Availability bias correction: aerial 0.142, CV=0.462; shipboard 0.7644, CV= 0.246.

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value as estimated by the habitat model. N/A indicates it was assumed to be in the True 0 modeled area.

Figure 9-11 Annual abundance trends for unidentified beaked whales in wind energy study areas
10 Pygmy/Dwarf Sperm Whales (Kogia spp)

Figure 10-1 Pygmy or dwarf sperm whale. Credit: NOAA/SEFSC Image collected under MMPA Research permit #779-1638.

10.1 Data Collection

Figure 10-2 Track lines and Kogia sightings during 2010 - 2013

Platform	Effort (km)			Common name	Species	Total sightings / Total animals				
	Spring	Summer	Fall	Winter			Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Dwarf sperm whale	Kogia simus	0	20/37	0	0
					Pygmy sperm whale	Kogia breviceps	0	25/33	0	0
					Unknown Pygmy/Dwarf sperm whale	-	0	10/11	0	0
NE Aerial	7,502	10,468	11,038	3,573	Dwarf sperm whale	Kogia simus	0	0	0	0
					Pygmy sperm whale	Kogia breviceps	0	0	0	0
					Unknown Pygmy/Dwarf sperm whale	-	0	0	0	0
SE Shipboard	0	8,537	2,093	0	Dwarf sperm whale	Kogia simus	0	6/9	0	0
					Pygmy sperm whale	Kogia breviceps	0	2/4	0	0
					Unknown Pygmy/Dwarf sperm whale	-	0	52/107	2/2	0
SE Aerial	17,978	16,835	11,818	6,007	Dwarf sperm whale	Kogia simus	0	0	0	0
					Pygmy sperm whale	Kogia breviceps	0	0	0	0
					Unknown Pygmy/Dwarf sperm whale	-	0	0	0	0

Table 10-1 Research effort 2010 - 2013 and Kogia sightings

10.2 Mark-Recapture Distance Sampling Analysis

Table 10-2 Parameter estimates from Kogia (UNKO, DSWH, PSWH) MRDS analysisHR=Hazard Rate, HN= Half Normal, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p- value	K-S p-value	CvM p-value
NE- shipboard group 4	-	CBWH,DSWH, GBWH,PSWH, SBWH,UNBW, UNKO	Distance+observer	Distance+swell+ sea	6000	HR	0.554	0.105	0.564	0.457	0.867
SE- shipboard group 2	-	BBWH,CBWH, DSWH, PSWH, UNBW, UNKO	Distance	Distance	8310	HR	0.355	0.403	0.600	0.909	0.918

10.3 Generalized Additive Model Analysis

	Approximate significance of smooth terms							
	edf	Ref.df	F	p-value	std.dev	-		
s(chl)	0.8628	4	4.158	2.45e-06	0.436113	***		
s(salinity)	0.6835	4	1.560	0.00153	0.054235	**		
s(depth)	3.1749	4	31.175	< 2e-16	5.84E-05	***		
s(slope)	0.7627	4	1.793	0.00196	0.008725	**		
s(dist1000)	1.0053	4	7.679	6.40e-09	5.32E-09	***		
Scale	-	-	-	-	0.768719			
Signif. codes:	0 '***' 0.00	0.01 (**' 0.01	·*' 0.05	0.1 ' ' 1				
Estimated deg	grees of freed	om: Total =	7.49					
R^2 (adjusted) = 0.0414 Deviance explained = 33.7%								
REML = 310.03 Scale estimate = 0.21316 sample size = 2330								

Table 10-3 Habitat model output for Kogia

Figure 10-4 *Kogia* density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.403	Excellent
MAPE	Mean absolute percentage error	Non-zero density	82.28	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.195	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.017	Excellent

Table 10-4 Dia	anostic statisti	cs from <i>Kogia</i>	habitat model
	ignoono olanon		maxitat model

The cutoff values are taken from Kinlan et al. 2012. Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

10.4 Abundance Estimates for AMAPPS Study Area

Season	Abundance	CV	95% Confidence Interval
Summer (June-August)	9,951	0.207	6,661 – 14,865

Table 10-5 Kogia average abundance estimates for AMAPPS study ar	ea
Availability bias correction: aerial N/A: shipboard 0.5303 $CV = 0.307$	

orrection: aerial N/A; shipboard 0.5393, C V= 0.307.

Figure 10-5 Annual abundance trends for Kogia for AMAPPS study area

10.5 Seasonal Prediction Maps

Figure 10-6 *Kogia* summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 10-7 Lower 2.5% percentile of summer Kogia estimates

Figure 10-8 Upper 97.5% percentile of summer Kogia estimates

Figure 10-9 *Kogia* 2010-2013 summer density and 1980-2013 OBIS sightings Pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 10-10 CV of summer density estimates for Kogia

10.6 Wind Energy Study Areas

Season	Area	Abundance*	CV	95% Confidence Interval
Summer	Rhode Island/ Massachusetts	N/A	-	-
(June-August)	New York	N/A	-	-
	New Jersey	N/A	-	-
	Delaware/ Maryland	N/A	-	-
	Virginia	N/A	-	-
	North Carolina	0	0.585	0 - 0
	South Carolina/ North Carolina	N/A	-	-
	Georgia	N/A	-	-
	Florida	N/A	-	-

Table 10-6 Kogia average abundance estimates for wind energy study areas

Availability bias correction: aerial N/A; shipboard 0.5393, CV= 0.307.

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value as estimated by the habitat model. N/A indicates it was assumed to be in the True 0 modeled area.

11 Pilot Whales (Globicephala spp)

Figure 11-1 Pilot whale. Credit: NOAA/NEFSC/Peter Duley Image collected under MMPA Research permit #775-1600.

11.1 Data Collection

Platform	Effort (km)		Common name	Species	Total sightings / Total animal		mals			
	Spring	Summer	Fall	Winter			Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Long-finned pilot whale	Globicephala melas	0/0	1/17	0/0	0/0
					Short-finned pilot whale	Globicephala macrorhynchus	0/0	3/18	0/0	0/0
					Unknown pilot whale	-	0/0	129/1,405	0/0	0/0
NE Aerial	7,502	10,468	11,038	3,573	Long-finned pilot whale	Globicephala melas	0/0	0/0	0/0	0/0
					Short-finned pilot whale	Globicephala macrorhynchus	0/0	0/0	0/0	0/0
					Unknown pilot whale	-	3/4	2/3	8/45	5/6
SE Shipboard	0	8,537	2,093	0	Long-finned pilot whale	Globicephala melas	0/0	0/0	0/0	0/0
					Short-finned pilot whale	Globicephala macrorhynchus	0/0	0/0	0/0	0/0
					Unknown pilot whale	-	0/0	44/829	35/467	0/0
SE Aerial	17,978	16,835	11,818	6,007	Long-finned pilot whale	Globicephala melas	0/0	0/0	0/0	0/0
					Short-finned pilot whale	Globicephala macrorhynchus	0/0	0/0	0/0	0/0
					Unknown pilot whale	-	1/135	20/538	16/268	0/0

Table 11-1 Research effort 2010 - 2013 and pilot whale sightings

11.2 Mark-Recapture Distance Sampling Analysis

Table 11-2 Parameter estimates from pilot whale (LSPW, LFPW, and SFPW) MRDS analysisHR=Hazard Rate, HN= Half Normal, LT= Left truncation, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p-value	CvM p-value
SE-aerial group 2	-	LSPW,RIDO, RTDO	Distance+Observer	Distance	400	HR	0.712	0.171	0.454	0.331	0.389
NE-aerial group 2	1	CBDO,LSPW, RIDO	Distance	Distance+sea	LT35-861	HR	0.647	0.147	0.397	0966	0.958
	2		-	Distance	861	HR	-	-	0.129	0.892	0.765
SE-shipboard group 3	-	FKWH,LSPW, RIDO,RTDO	Distance	Distance+sea	5000	HR	0.671	0.114	0.683	0.918	0.925
NE-shipboard group 5	-	LFPW,LSPW, SFPW	Distance*observer	Distance+glare	5000	HR	0.740	0.090	0.372	0.991	0.942

Figure 11-3 Q-Q plots and detection functions from pilot whale MRDS analysis Group 2 aerial southeast region (a,b), group 2 aerial northeast region (c,d), group 5 shipboard northeast region(e,f) and group 3 shipboard southeast region (g,h).

11.3 Generalized Additive Model Analysis

Approximate significance of smooth terms								
	edf	Ref.df	F	p-value	std.dev	-		
s(pic)	0.9727	4	44.85	<2e-16	1.44E+03	***		
s(pp)	2.6109	4	116.98	<2e-16	1.01E-04	***		
s(btemp)	3.5678	4	29.93	<2e-16	3.54E-01	***		
s(slope)	3.2387	4	196.86	<2e-16	4.31E-01	***		
s(lat)	3.7312	4	96.57	<2e-16	3.71E-01	***		
Scale	-	-	-	-	1.88E+00			

Table 11-3 Habitat model output for pilot whales

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated degrees of freedom: Total = 15.12

 R^2 (adjusted) = 0.0533 Deviance explained = 56.2%

REML = 1223 Scale estimate = 0.68115 sample size = 11419

Figure 11-4 Pilot whale density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0. 529	Excellent
MAPE	Mean absolute percentage error	Non-zero density	88.92	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0. 148	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.097	Excellent

Table 11-4 Di	agnostic statistics	from pilot v	whale habita	t model
---------------	---------------------	--------------	--------------	---------

The cutoff values are taken from Kinlan et al. 2012. Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3 MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50% MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

11.4 Abundance Estimates for AMAPPS Study Area

Season	Abundance	CV	95% Confidence Interval
Spring (March- May)	26,441	0.396	12,525 - 55,820
Summer (June-August)	24,670	0.293	14,052 - 43,311
Fall (September-November)	29,559	0.305	16,489 - 52,989

Table 11-5 Pilot whale average abundance estimates for AMAPPS study area Availability bias correction: aerial 0.679, CV=0.241; shipboard 1.0, CV= 0.0.

Figure 11-5 Annual abundance trends for pilot whales in wind energy study areas

11.5 Seasonal Prediction Maps

Figure 11-6 Pilot whale spring average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 11-7 Lower 2.5% percentile of spring pilot whale estimates

Figure 11-8 Upper 97.5% percentile of spring pilot whale estimates

Figure 11-9 Pilot whale 2010-2013 spring density and 1970-2014 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 11-10 Pilot while spring 2014 density and AMAPPS 2014 tracks and sightings These sightings were not used to develop the density-habitat model.

Figure 11-11 CV of spring density estimates for pilot whales

Figure 11-12 Pilot whale summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 11-13 Lower 2.5% percentile of spring pilot whale estimates

Figure 11-14 Upper 97.5% percentile of summer pilot whale estimates

Figure 11-15 Pilot whale 2010-2013 summer density and 1970-2014 OBIS sightings Pink circles; Halpin *et al.*, 2009). These sightings were not used to develop the density-habitat model.

Figure 11-16 CV of summer density estimates for pilot whales

Figure 11-17 Pilot whale fall average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 11-18 Lower 2.5% percentile of fall pilot whale estimates

Figure 11-19 Upper 97.5% percentile of fall pilot whale estimates

Figure 11-20 Pilot whale 2010-2013 fall density and 1970-2014 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 11-21 CV of fall density estimates for pilot whales

11.6 Wind Energy Study Areas

Table 11-6 Pilot whale average abundance estimates for wind energy study areasAvailability bias correction: aerial 0.679, CV=0.241; shipboard 1.0, CV= 0.0.

Season	Area	Abundance*	CV	95% Confidence Interval
Spring	Rhode Island/ Massachusetts	8	0.163	6 - 11
(March-May)	New York	4	0.169	3 - 5
	New Jersey	9	0.173	7 - 13
	Delaware/ Maryland	7	0.175	5 - 10
	Virginia	15	0.158	11 - 20
	North Carolina	124	0.112	100 - 155
	South Carolina/ North Carolina	82	0.133	63 - 106
	Georgia	0	0.35	0 - 0
	Florida	12	0.257	7 - 20
Summer	Rhode Island/ Massachusetts	37	0.122	29 - 47
(June-August)	New York	6	0.179	4 - 9
	New Jersey	9	0.251	5 - 14
	Delaware/ Maryland	6	0.214	4 - 10
	Virginia	14	0.203	9 - 20
	North Carolina	175	0.096	145 - 211
	South Carolina/ North Carolina	11	0.158	8 - 15
	Georgia	0	2.304	0 - 0
	Florida	7	0.237	5 - 12
Fall	Rhode Island/ Massachusetts	47	0.137	36 - 62
(September- November)	New York	9	0.18	6 - 13
	New Jersey	18	0.248	11 - 29
	Delaware/ Maryland	9	0.236	6 - 14
	Virginia	12	0.221	8 - 19
	North Carolina	165	0.105	134 - 202
	South Carolina/ North Carolina	9	0.221	6 - 14
	Georgia	0	0.695	0 - 0
	Florida	9	0.256	6 - 15

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value predicted by the habitat model.

Figure 11-22 Annual abundance trends for pilot whales in wind energy study areas

12 Risso's Dolphin (Grampus griseus)

Figure 12-1 Risso's dolphin. Credit: NOAA/NEFSC/Peter Duley Image collected under MMPA Research permit #775-1875.

12.1 Data Collection

Figure 12-2 Track lines and Risso's dolphin sightings during 2010 - 2013

Platform		Effor	t (km)		Common name	Species	Tota	al sightings /	Total aniı	nals
	Spring	Summer	Fall	Winter	_		Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Risso's dolphin	Grampus griseus	0/0	224/1,215	0/0	0/0
NE Aerial	7,502	10,468	11,038	3,573	-	-	11/33	1/15	18/143	23/61
SE Shipboard	0	8,537	2,093	0	-	-	0/0	21/254	5/44	0/0
SE Aerial	17,978	16,835	11,818	6,007	-	-	22/106	11/162	1/5	0/0

Table 12-1 Research effort 2010 - 2013 and Risso's dolphin sightings

12.2 Mark-Recapture Distance Sampling Analysis

Table 12-2 Parameter estimates from Risso's dolphin (RIDO) MRDS analysisHR=Hazard Rate, HN= Half Normal, LT= Left truncation, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p-value	CvM p-value
SE-aerial group 2	-	LSPW,RIDO, RTDO	Distance+observer	Distance	400	HR	0.712	0.171	0.454	0.331	0.389
NE-aerial group 2	1	CBDO,LSPW, RIDO	Distance	Distance+sea	LT35-861	HR	0.647	0.147	0.397	0.966	0.958
	2		-	Distance	861	HR	-	-	0.129	0.892	0.765
SE- shipboard group 3	-	FKWH,LSPW , RIDO,RTDO	Distance	Distance+sea	5000	HR	0.671	0.114	0.683	0.918	0.925
NE- shipboard group 6	-	LFPW,LSPW, SFPW	Distance+observer	Distance+swell	5000	HR	0.674	0.073	0.329	0.815	0.880

Figure 12-3 Q-Q plots and detection functions from Risso's dolphin MRDS analysis Group 2 aerial southeast region (a,b), group 2 aerial northeast region (c,d), group 6 shipboard northeast region (e,f) and group 3 shipboard southeast region (g,h).

12.3 Generalized Additive Model Analysis

	A	terms				
	edf	Ref.df	F	p-value	std.dev	
s(sst)	1.314	4	62.33	<2e-16	1.14E-02	***
s(btemp)	2.866	4	32.99	<2e-16	1.61E-01	***
s(dist2shore)	3.607	4	150.68	<2e-16	3.02E-03	***
s(slope)	3.69	4	67.32	<2e-16	1.08E+00	***
s(dist125)	3.534	4	100.9	<2e-16	1.71E-07	***
Scale	-	-	-	-	1.59E+00	

Table 12-3 Habitat model output for Risso's dolphins

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated degrees of freedom: Total = 16.01

 R^2 (adjusted) = 0.028 Deviance explained = 49.6%

REML = 1351.5 Scale estimate = 0.55835 sample size = 11493

Figure 12-4 Risso's dolphin density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.102	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	85.38	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.186	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.076	Excellent

Table 12-4 Diagnostic statistics from Risso's dolphin habitat model

The cutoff values are taken from Kinlan et al. 2012

Rank R: Poor= x<0.05; Fair to good = 0.05<=x<0.3; Excellent= x>0.3MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

12.4 Abundance Estimates for the AMAPPS Study area

Season	Abundance	CV	95% Confidence Interval
Spring (March- May)	12,759	0.207	8,540 - 19,061
Summer (June-August)	36,785	0.205	24,738 - 54,699
Fall (September-November)	29,093	0.205	19,551 – 43,292

Table 12-5 Risso's dolphin average abundance estimates for AMAPPS study areaAvailability bias correction: aerial 0.850, CV=0.173; shipboard 1.0, CV=0.0.

Figure 12-5 Annual abundance trends for Risso's dolphins for AMAPPS study area

12.5 Seasonal Prediction Maps

Figure 12-6 Risso's dolphin spring average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 12-7 Lower 2.5% percentile of spring Risso's dolphin estimates

Figure 12-8 Upper 97.5% percentile of spring Risso's dolphin estimates

Figure 12-9 Risso's dolphin 2010-2013 spring density and 1970-2014 OBIS sightings Pink circle (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 12-10 Risso's dolphin spring 2014 density and AMAPPS 2014 tracks and sightings These sightings were not used to develop the density-habitat model.

Figure 12-11 CV of spring density estimates for Risso's dolphins

Figure 12-12 Risso's dolphin summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 12-13 Lower 2.5% percentile of summer Risso's dolphin estimates

Figure 12-14 Upper 97.5% percentile of summer Risso's dolphin estimates

Figure 12-15 Risso's dolphin 2010 - 2013 summer density and 1970-2014 OBIS sightings pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 12-16 CV of summer density estimates for Risso's dolphin

Figure 12-17 Risso's dolphin fall average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 12-18 Lower 2.5% percentile of fall Risso's dolphin estimates

Figure 12-19 Upper 97.5% percentile of fall Risso's dolphin estimates

Figure 12-20 Risso's dolphin 2010-2013 fall density and 1970-2014 OBIS sightings Pink circles (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 12-21 CV of fall density estimates for Risso's dolphins

12.6 Wind Energy Study Areas

Season	Area	Abundance*	CV	95% Confidence Interval
Spring	Rhode Island/ Massachusetts	0	0.149	0 - 0
(March-May)	New York	0	0.22	0 - 0
	New Jersey	0	0.221	0 - 0
	Delaware/ Maryland	0	0.192	0 - 0
	Virginia	0	0.138	0 - 0
	North Carolina	14	0.09	12 - 17
	South Carolina/ North Carolina	7	0.082	6 - 8
	Georgia	0	0.353	0 - 0
	Florida	2	0.187	1 - 3
Summer	Rhode Island/ Massachusetts	1	0.131	1 - 2
(June-August)	New York	0	0.206	0 - 0
	New Jersey	0	0.356	0 - 0
	Delaware/ Maryland	0	0.296	0 - 0
	Virginia	0	0.268	0 - 0
	North Carolina	29	0.081	25 - 34
	South Carolina/ North Carolina	11	0.076	9 - 13
	Georgia	0	0.809	0 - 0
	Florida	3	0.198	2 - 4
Fall	Rhode Island/ Massachusetts	1	0.138	1 - 1
(September- November)	New York	0	0.232	0 - 0
	New Jersey	0	0.276	0 - 0
	Delaware/ Maryland	0	0.248	0 - 0
	Virginia	0	0.194	0 - 0
	North Carolina	18	0.085	15 - 21
	South Carolina/ North Carolina	5	0.088	4 - 6
	Georgia	0	0.536	0 - 0
	Florida	2	0.193	2 - 3

Table 12-6 Risso's dolphin average abundance estimates for wind energy study areasAvailability bias correction: aerial 0.850, CV= 0.173; shipboard 1.0, CV= 0.0.

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value predicted by the habitat model.

Figure 12-22 Annual abundance trends for Risso's dolphins in wind energy study areas

13 Atlantic White-sided Dolphin (Lagenorhynchus acutus)

Figure 13-1 Atlantic white-sided dolphin. Credit: NOAA/NEFSC Image collected under MMPA Research permit #775-1875.

13.1 Data Collection

Figure 13-2 Track lines and Atlantic white-sided dolphin sightings during 2010-2013

Platform	Effort (km)		Common name	Species	Total sightings / Total anim		imals			
	Spring	Summer	Fall	Winter			Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Atlantic white-sided dolphin	Lagenorhynchus acutus	0/0	1/34	0/0	0/0
NE Aerial	7,502	10,468	11,038	3,573	-	-	37/366	25/408	13/315	18/132
SE Shipboard	0	8,537	2,093	0	-	-	0/0	0/0	0/0	0/0
SE Aerial	17,978	16,835	11,818	6,007	-	-	0/0	0/0	0/0	0/0

Table 13-1 Research effort 2010 - 2013 and Atlantic white-sided dolphin sightings

13.2 Mark-Recapture Distance Sampling Analysis

Table 13-2 Parameter estimates from Atlantic white-sided dolphin (WSDO) MRDS analysis

HR=Hazard Rate, HN= Half Normal, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi-square p-value	K-S p-value	CvM p-value
NE-aerial group 4	1	UNCW,WBDO WSDO	Distance*observer	Subjavg	1000	HN	0.600	0.196	0.875	0.661	0.465
	2		-	Distance	600	HR	-	-	0.452	0.916	0.960

Figure 13-3 Q-Q plots and detection functions from Atlantic white-sided dolphin MRDS analysis

13.3 Generalized Additive Model Analysis

Approximate significance of smooth terms							
	edf	Ref.df	F	p-value	std.dev		
s(chl)	0.8218	4	2.004	0.0018	2.32E-03	**	
s(sst)	1.9629	4	3.668	2.32E-04	1.12E-01	***	
s(mld)	0.7015	4	1.322	0.00508	7.67E-05	**	
s(slope)	0.56	4	0.829	0.01348	1.06E-02	*	
s(dist125)	0.9681	4	6.845	6.05E-08	3.48E-08	***	
Scale	-	-	-	-	3.92E+00		
Signif. codes:	0 '***' 0.0	01 '**' 0.01	·*' 0.05 ·.	0.1 ' ' 1			
Estimated deg	grees of freed	dom: Total :	= 6.01				
R^2 (adjusted) = 0.00642 Deviance explained = 18.5%							
REML = 360.	95 Scale est	timate = 6.9	696 samp	ble size $= 2392$	2		

Table 13-3 Habitat model output for Atlantic white-sided dolphins

Figure 13-4 Atlantic white-sided dolphin density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.313	Excellent
MAPE	Mean absolute percentage error	Non-zero density	86.47	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.079	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.329	Fair to good

Fable 13-4 Diagnostic statistics from	Atlantic white-sided dolph	in habitat mode
--	----------------------------	-----------------

The cutoff values are taken from Kinlan et al. 2012

Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good = 150%>=x>50%; Excellent= x<=50% MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

13.4 Abundance Estimates for AMAPPS Study Area

Season	Abundance	CV	95% Confidence Interval
Spring (March- May)	47,370	0.666	14,454 - 155,248
Summer (June-August)	42,985	0.463	18,128 - 101,923
Fall (September-November)	44,276	0.394	21,047 - 93,144

Table 13-5 Atlantic white-sided dolphin average abundance estimates for AMAPPS study area

Figure 13-5 Annual abundance trends for Atlantic white-sided dolphins for AMAPPS study area

13.5 Seasonal Prediction Maps

Figure 13-6 Atlantic white-sided dolphin spring average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 13-7 Lower 2.5% percentile of spring Atlantic white-sided dolphin estimates

Figure 13-8 Upper 97.5% percentile of spring Atlantic white-sided dolphin estimates

Figure 13-9 Atlantic white-sided dolphin 2010-2013 spring density and 1970-2013 OBIS sightings

pink circles(Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 13-10 CV of spring density estimates for Atlantic white-sided dolphins

Figure 13-11 Altantic white-sided dolphin summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 13-12 Lower 2.5% percentile of summer Atlantic white-sided dolphin estimates

Figure 13-13 Upper 97.5% percentile of summer Atlantic white-sided dolphin estimates

Figure 13-14 Atlantic white-sided dolphin summer density and 1970-2013 OBIS sightings Pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 13-15 CV of summer density estimates for Atlantic white-sided dolphins

Figure 13-16 Atlantic white-sided dolphin fall average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 13-17 Lower 2.5% percentile of fall Atlantic white-sided dolphin estimates

Figure 13-18 Upper 97.5% percentile of fall Atlantic white-sided dolphin estimates

Figure 13-19 Atlantic white-sided dolphin 2010-2013 fall density and 1970-2013 OBIS sightings Pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 13-20 CV of fall density estimates for Atlantic white-sided dolphins

13.6 Wind Energy Study Areas

Table 13-6 Atlantic white-sided dolphin average abundance estimates for wind energy study areas

Season	Area	Abundance*	CV	95% Confidence Interval
Spring	Rhode Island/ Massachusetts	254	0.323	137 - 471
(March-May)	New York	20	0.454	9 - 48
	New Jersey	51	0.432	23 - 116
	Delaware/ Maryland	66	0.314	36 - 120
	Virginia	110	0.22	72 - 168
	North Carolina	376	0.171	269 - 524
	South Carolina/ North Carolina	184	0.36	93 - 364
	Georgia	2	0.679	1 - 7
	Florida	4	0.949	1 - 18
Summer	Rhode Island/ Massachusetts	107	0.395	51 - 226
(June-August)	New York	3	0.69	1 - 11
	New Jersey	5	0.802	1 - 18
	Delaware/ Maryland	5	0.644	2 - 17
	Virginia	6	0.702	2 - 20
	North Carolina	22	0.702	6 - 75
	South Carolina/ North Carolina	10	1.122	2 - 61
	Georgia	0	1.296	0 - 0
	Florida	1	1.322	0 - 10
Fall	Rhode Island/ Massachusetts	134	0.315	74 - 245
(September- November)	New York	10	0.486	4 - 24
	New Jersey	22	0.531	8 - 58
	Delaware/ Maryland	25	0.392	12 - 52
	Virginia	37	0.294	21 - 64
	North Carolina	105	0.278	62 - 180
	South Carolina/ North Carolina	49	0.611	16 - 147
	Georgia	1	0.808	0 - 3
	Florida	2	1.101	0 - 10

Availability bias correction: aerial 0.890, CV= 0.186; shipboard N/A.

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value predicted by the habitat model.

Figure 13-21 Annaul abundance trends for Atlantic white-sided dolphins in wind energy study areas

14 Common Dolphin (*Delphinus delphis*)

Figure 14-1 Common dolphin. Credit: NOAA/NEFSC/Allison Henry Image collected under MMPA Research permit #775-1875.

14.1 Data Collection

Figure 14-2 Track lines and common dolphin sightings during 2010 - 2013

Platform	Effort (km)		Common name	Species	Total sightings / Total animals		ls			
	Spring	Summer	Fall	Winter	-		Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Common dolphin	Delphinus delphis	0/0	239/7,967	0/0	0/0
NE Aerial	7,502	10,468	11,038	3,573	-	-	5/49	16/672	64/1,436	17/569
SE Shipboard	0	8,537	2,093	0	-	-	0/0	2/269	0/0	0/0
SE Aerial	17,978	16,835	11,818	6,007	-	-	68/3,229	7/510	3/89	2/64

Table 14-1 Research effort 2010 - 2013 and common dolphin sightings

14.2 Mark-Recapture Distance Sampling Analysis

Table 14-2 Parameter estimates from common dolphin (CODO) MRDS analysisHR=Hazard Rate, HN= Half Normal, LT= Left truncation, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p-value	CvM p-value
SE-aerial group 3	1	CODO, STDO	Distance	Distance+Time of day	330	HR	0.859	0.065	0.642	0.977	0.861
	2		-	Distance	330	HR	-	-	0.137	0.914	0.710
NE-aerial group 3	1	CODO, STDO	Distance	Distance	LT10-500	HR	0.706	0.151	0.421	0.748	0.861
	2		-	Distance+glare	LT10-500	HR	-	-	0.102	0.722	0.618
SE-shipboard group 4	-	ASDO,PSDO, STDO,CODO	Distance+observer	Distance+sea	4500	HR	0.722	0.100	0.190	0.993	0.969
NE-shipboard group 7	-	CODO	Distance	Distance+swell	6000	HR	0.600	0.073	0.461	0.800	0.806

Figure 14-3 Q-Q plots and detection functions from common dolphin MRDS analysis Group 3 aerial southeast region (a,b), group 3 aerial northeast region (c,d), group 7 shipboard northeast region (e,f) and group 4 shipboard southeast region (g,h).

14.3 Generalized Additive Model Analysis

		_				
	edf	Ref.df	F	p-value	std.dev	
s(sst)	3.482	4	129.96	<2e-16	1.66E-01	***
s(dist2shore)	3.75	4	91.48	<2e-16	1.07E-02	***
s(dist1000)	3.223	4	70.69	<2e-16	9.77E-08	***
s(lat)	2.633	4	55.91	<2e-16	4.55E-01	***
Scale	-	-	-	-	3.14E+00	

Table 14-3 Habitat model	output for	r common dolphins
--------------------------	------------	-------------------

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated degrees of freedom: Total = 14.09

 R^2 (adjusted) = 0.0296 Deviance explained = 42.1%

REML = 1828.8 Scale estimate = 2.2474 sample size = 11888

Figure 14-4 Common dolphin density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.191	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	104.38	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.187	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.268	Fair to good

Table 14-4 Diagnostic statistics from common dolphin habitat model

The cutoff values are taken from Kinlan et al. 2012.

Rank R: Poor= x<0.05; Fair to good = 0.05<=x<0.3; Excellent= x>0.3MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

14.4 Abundance Estimates for AMAPPS Study Area

Season	Abundance	CV	95% Confidence Interval
Spring (March- May)	111,041	0.216	73,071 - 168,741
Summer (June-August)	118,695	0.213	78,490 - 179,494
Fall (September-November)	183,509	0.185	127,981 - 263,128

Table 14-5 Common dolphin average abundance estimates for AMAPPS study areaAvailability bias correction: aerial 0.93, CV=0.138; shipboard 1.0, CV= 0.0.

Figure 14-5 Annual abudance trends for common dolphins for AMAPPS study area

14.5 Seasonal Prediction Maps

Figure 14-6 Common dolphin spring average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 14-7 Lower 2.5% percentile of spring common dolphin estimates

Figure 14-8 Upper 97.5% percentile of spring common dolphin estimates

Figure 14-9 Common dolphin 2010-2013 spring density and 1963-2014 OBIS sightings pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 14-10 Common dolphin spring 2014 density and AMAPPS 2014 tracks and sightings These sightings were not used to develop the density-habitat model.

Figure 14-11 CV of spring density estimates for common dolphins

Figure 14-12 Common dolphin summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 14-13 Lower 2.5% percentile of summer common dolphin estimates

Figure 14-14 Upper 97.5% percentile of summer common dolphin estimates

Figure 14-15 Common dolphin 2010-2013 summer density and 1963-2014 OBIS sightings pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 14-16 CV of summer density estimates for common dolphins

Figure 14-17 Common dolphin fall average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 14-18 Lower 2.5% percentile of fall common dolphin estimates

Figure 14-19 Upper 97.5% percentile of fall common dolphin estimates

Figure 14-20 Common dolphin 2010-2013 fall density and 1963-2014 OBIS sightings Pink circles (Halpin et al. 2009). These sightings were not included in the density model.

Figure 14-21 CV of fall density estimates for common dolphins

14.6 Wind Energy Study Areas

Season	Area	Abundance*	CV	95% Confidence Interval	
Spring	Rhode Island/ Massachusetts	1,161	0.088	977 – 1,380	
(March-May)	New York	232	0.104	189 - 284	
	New Jersey	536	0.091	449 - 640	
	Delaware/ Maryland	454	0.088	382 - 538	
	Virginia	690	0.082	588 - 809	
	North Carolina	2,301	0.067	2,017 - 2,625	
	South Carolina/ North Carolina	17	0.281	10 - 29	
	Georgia	0	0.539	0 - 0	
	Florida	0	2.416	0 - 0	
Summer	Rhode Island/ Massachusetts	3,246	0.065	2,860 - 3,685	
(June-August)	New York	313	0.096	259 - 377	
	New Jersey	467	0.098	385 - 567	
	Delaware/ Maryland	318	0.103	260 - 390	
	Virginia	239	0.118	190 - 301	
	North Carolina	663	0.115	529 - 829	
	South Carolina/ North Carolina	1	0.448	0 - 1	
	Georgia	0	0.911	0 - 0	
	Florida	0	2.559	0 - 0	
Fall	Rhode Island/ Massachusetts	3,760	0.06	3,342 - 4,231	
(September- November)	New York	505	0.078	434 - 589	
	New Jersey	936	0.075	808 - 1,085	
	Delaware/ Maryland	714	0.077	614 - 831	
	Virginia	852	0.079	729 - 995	
	North Carolina	2,296	0.072	1,994 – 2,644	
	South Carolina/ North Carolina	7	0.374	3 - 14	
	Georgia	0	0.735	0 - 0	
	Florida	0	2.79	0 - 0	

Table 14-6 Common dolphin average abundance estimates for wind energy study areasAvailability bias correction: aerial 0.93, CV = 0.138; shipboard 1.0, CV = 0.0.

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value predicted by the habitat model.

Figure 14-22 Annual abundance trends for common dolphins in wind energy study areas

15 Atlantic Spotted Dolphin (Stenella frontalis)

Figure 15-1 Atlantic spotted dolphin. Credit: NOAA/NEFSC/Kelly Slivka Image collected under MMPA Research permit #775-1875.

15.1 Data Collection

Figure 15-2 Track lines and Atlantic spotted dolphin sightings during 2010 - 2013

Platform		Effor	t (km)		Common name	Species	Tota	l sightings /	Total ani	mals
	Spring	Summer	Fall	Winter	-		Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Atlantic spotted dolphin	Stenella frontalis	0	46/1,334	0	0
NE Aerial	7,502	10,468	11,038	3,573	-	-	0	0	0	0
SE Shipboard	0	8,537	2,093	0	-	-	0	66/2,380	18/692	0
SE Aerial	17,978	16,835	11,818	6,007	-	-	32/481	33/861	22/234	7/385

Table 15-1 Research effort 2010 - 2013 and Atlantic spotted dolphin sightings

15.2 Mark-Recapture Distance Sampling Analysis

Table 15-2 Parameter estimates from Atlantic spotted dolphin (ASDO) MRDS analysisHR= Hazard Rate, HN= Half Normal, LT= Left truncation, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p-value	CvM p-value
SE-aerial group 4	1	ASDO	Distance+observer	Distance+sea	LT50-392	HN	0.843	0.101	0.676	0.952	0.974
	2		-	Distance+sea	392	HN	-	-	0.24	0.717	0.766
NE-shipboard group 9	-	ASDO	Distance+observer	Distance+size+sea	4984	HR	0.924	0.049	0.375	0.970	0.953
SE-shipboard group 4	-	ASDO, PSDO, CODO, STDO	Distance+Observer	Distance+sea	4500	HR	0.722	0.100	0.190	0.993	0.969

Figure 15-3 Q-Q plots and detection functions from Atlantic spotted dolphin MRDS analysis Group 4 aerial southeast region (a,b), group 9 shipboard northeast region ((c,d) and group 4 shipboard southeast region (e,f).

15.3 Generalized Additive Model Analysis

Approximate significance of smooth terms						
	edf	Ref.df	F	p-value	std.dev	-
s(pic)	0.9535	4	9.233	3.92E-10	4.39E+02	***
s(pp)	3.5883	4	21.568	< 2e-16	4.56E-05	***
s(salinity)	2.8044	4	20.826	< 2e-16	9.56E-01	***
s(lat)	3.1857	4	34.305	< 2e-16	2.28E-01	***
Scale	-	-	-	-	2.79E+00	
Signif. codes:	0 '***' 0.0	01 '**' 0.01	·*' 0.05 ·.	0.1 ' ' 1		
Estimated deg	grees of free	dom: Total =	= 11.53			
R^2 (adjusted) = 0.00569 Deviance explained = 16.2%						
REML = 167	1.5 Scale es	timate $= 3.3$	661 sample	e size = 9096		

 Table 15-3 Habitat model output for Atlantic spotted dolphins

Figure 15-4 Atlantic spotted dolphin density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.272	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	87.86	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.131	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.193	Excellent

Table 15-4 Diagnostic statistics from Atlantic spotted dolphin habitat model

The cutoff values are taken from Kinlan et al. 2012

Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

15.4 Abundance Estimates for AMAPPS Study Area

Availability bias correction: aerial and shipboard 1.0, CV= 0.0.

Season	Abundance	CV	95% Confidence Interval
Spring (March- May)	65,948	0.156	48,703 - 89,299
Summer (June-August)	54,731	0.153	40,633 - 73,720
Fall (September-November)	56,372	0.165	40,868 - 77,758

Table 15-5 Atlantic spotted dolphin average abundance estimates for AMAPPS study area

Figure 15-5 Annual abundance trends for Atlantic spotted dolphins for AMAPPS study area

15.5 Seasonal Prediction Maps

Figure 15-6 Altantic spotted dolphin spring average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 15-7 Lower 2.5% percentile of spring Atlantic spotted dolphin estimates

Figure 15-8 Upper 97.5% percentile of spring Atlantic spotted dolphin estimates

Figure 15-9 Atlantic spotted dolphin 2010-2013 spring density and 1984-2013 OBIS sightings Pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 15-10 CV of spring density estimates for Atlantic spotted dolphins

Figure 15-11 Atlantic spotted dolphin summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 15-12 Lower 2.5% percentile of summer Atlantic spotted dolphin estimates

Figure 15-13 Upper 97.5% percentile of summer Atlantic spotted dolphin estimates

Figure 15-14 Atlantic spotted dolphin 2010-2013 summer density and 1984-2013 OBIS sightings

Pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 15-15 CV of summer density estimates for Atlantic spotted dolphins

Figure 15-16 Atlantic spotted dolphin fall average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 15-17 Lower 2.5% percentile of fall Atlantic spotted dolphin estimates

Figure 15-18 Upper 97.5% percentile of fall Atlantic spotted dolphin estimates

Figure 15-19 Atlantic spotted dolphin 2010-2013 fall density and 1984-2013 OBIS sightings Pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 15-20 CV of fall density estimates for Atlantic spotted dolphins

15.6 Wind Energy Study Areas

Season	Area	Abundance*	CV	95% Confidence Interval
Spring	Rhode Island/ Massachusetts	40	0.255	24 - 65
(March-May)	New York	13	0.226	8 - 20
	New Jersey	51	0.200	34 - 75
	Delaware/ Maryland	44	0.175	32 - 62
	Virginia	149	0.148	112 - 199
	North Carolina	530	0.107	430 - 654
	South Carolina/ North Carolina	2,919	0.126	2,280 - 3,736
	Georgia	204	0.339	107 - 390
	Florida	13	0.301	7 - 24
Summer	Rhode Island/ Massachusetts	55	0.214	36 - 83
(June-August)	New York	9	0.262	5 - 15
	New Jersey	47	0.259	29 - 78
	Delaware/ Maryland	70	0.207	47 - 105
	Virginia	367	0.110	295 - 455
	North Carolina	1,024	0.086	865 - 1,212
	South Carolina/ North Carolina	2,599	0.118	2,065 - 3,270
	Georgia	163	0.285	94 - 281
	Florida	12	0.31	6 - 21
Fall	Rhode Island/ Massachusetts	69	0.230	44 - 107
(September- November)	New York	14	0.227	9 - 22
	New Jersey	45	0.268	27 - 75
	Delaware/ Maryland	46	0.263	28 - 77
	Virginia	183	0.166	132 - 253
	North Carolina	565	0.127	441 - 723
	South Carolina/ North Carolina	1,944	0.141	1,477 – 2,558
	Georgia	118	0.444	52 - 271
	Florida	14	0.332	8 - 27

Table 15-6 Atlantic spotted dolphin average abundance estimates for wind energy study areas Availability bias correction: aerial and shipboard 1.0, CV=0.0.

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value as estimated by the habitat model.

Figure 15-21 Annual abundance trends for Atlantic spotted dolphins in wind energy study areas

16 Striped Dolphin (Stenella coeruleoalba)

Figure 16-1 Striped dolphin. Credit: NOAA/NEFSC/Rich Pagen Image collected under MMPA Research permit #755-1600.

16.1 Data Collection

Figure 16-2 Track lines and striped dolphin sightings during 2010-2013

Platform		Effort	: (km)		Common name	Species	Tota	l sightings / '	Fotal anim	als
	Spring	Summer	Fall	Winter	-		Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Striped dolphin	Stenella coeruleoalba	0/0	133/5,218	0/0	0/0
NE Aerial	7,502	10,468	11,038	3,573	-	-	1/100	0/0	7/325	0/0
SE Shipboard	0	8,537	2,093	0	-	-	0/0	6/883	0/0	0/0
SE Aerial	17,978	16,835	11,818	6,007	-	-	1/110	0/0	0/0	0/0

Table 16-1 Research effort 2010 - 2013 and striped dolphin sightings

16.2 Mark-Recapture Distance Sampling Analysis

Table 16-2 Parameter estimates from striped dolphin (STDO) MRDS analysisHR= Hazard Rate, HN= Half Normal, LT= Left truncation, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p-value	CvM p-value
SE-aerial group 3	1	CODO, STDO	Distance+observer	Distance+sea	300	HR	0.856	0.065	0.642	0.977	0.861
	2		-	Distance+sea	300	HR	-	-	0.137	0.914	0.710
NE-aerial group 3	1	CODO, STDO	Distance	Distance	LT10-500	HR	0.706	0.151	0.421	0748	0.861
	2		-	Distance+glare	LT10-500	HR	-	-	0.102	0.722	0.618
SE-shipboard group 4	-	ASDO,PSDO, CODO,STDO	Distance+observer	Distance+sea	4500	HR	0.722	0.100	0.190	0.993	0.969
NE-shipboard group 8	-	STDO	Distance	Distance+sea	5000	HR	0.764	0.064	0.537	0.992	0.990

Figure 16-3 Q-Q plots and detection functions from striped dolphin MRDS analysis Group 3 aerial southeast region (a,b), group 3 aerial northeast region (c,d), group 8 shipboard northeast region (e,f) and group 4 shipboard southeast region (g,h).

16.3 Generalized Additive Model Analysis

	Α	terms				
	edf	Ref.df	F	p-value	std.dev	_
s(sst)	2.69679	4	45.483	<2e-16	2.61E-01	***
s(pp)	0.08489	4	0.135	1.12E-02	2.82E-07	*
s(btemp)	1.08434	4	85.304	<2e-16	5.09E-02	***
s(dist1000)	1.55334	4	19.659	<2e-16	1.77E-08	***
Scale	-	-	-	-	1.55E+00	
Signif. codes:	0 '***' 0.00	0.01 (**' 0.01	·*' 0.05	0.1 ' ' 1		
Estimated deg	rees of freed	om: Total =	= 6.42			
R^2 (adjusted) = 0.0767 Deviance explained = 52.8%						
REML = 457.7	75 Scale esti	imate $= 0.39$	9474 samp	ble size $= 3809$)	

Table 16-3 Habitat model output for striped dolphins

Figure 16-4 Striped dolphin density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.289	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	76.430	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.209	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.062	Excellent

Table 16-4 Diagnostic statistics for striped dolphin habitat model

The cutoff values are taken from Kinlan et al. 2012 Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3 MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50% MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

16.4 Abundance Estimates for AMAPPS Study Area

Season		Abundance	CV	95% Confidence Interval
Summe	r (June-August)	81,512	0.121	64,365 - 103,227
9	Spring	Summer	Fall	Winter
12000				2010 2011 2012 2013
nce 80000				Mean
oundai 60000				
40000 40000				
20000				
0 -	Mar Apr Ma	/ Jun Jul Aug Sep	Oct N	lov Dec Jan Feb

Table 16-5 Striped dolphin average abundance estimates for AMAPPS study areaAvailability bias correction: aerial and shipboard 1.0, CV= 0.0.

95% Confidence

Figure 16-5 Annual abundance trends for striped dolphins for AMAPPS study area

16.5 Seasonal Prediction Maps

Figure 16-6 Striped dolphin summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 16-7 Lower 2.5% percentile of summer striped dolphin estimates

Figure 16-8 Upper 97.5% percentile of summer striped dolphin estimates

Figure 16-9 Striped dolphin 2010-2013 summer density and 1976-2013 OBIS sightings pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 16-10 CV of summer density estimates for striped dolphins

16.6 Wind Energy Study Areas

Season	Area	Abundance*	CV	95% Confidence Interval
Summer	Rhode Island/ Massachusetts	19	0.192	13 - 27
(June-August)	New York	3	0.337	1 - 5
	New Jersey	0	0.661	0 - 1
	Delaware/ Maryland	0	0.625	0 - 1
	Virginia	0	0.622	0 - 0
	North Carolina	0	0.619	0 - 1
	South Carolina/ North Carolina	0	0.609	0 - 0
	Georgia	0	1.662	0 - 0
	Florida	0	0.303	0 - 0

Table 16-6 Striped dolphin average abundance estimates for wind energy study areas Availability bias correction: aerial and shipboard 1.0, CV= 0.0.

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value as estimated by the habitat model.

17 Common Bottlenose Dolphin (*Tursiops truncatus*)

Figure 17-1 Common bottlenose dolphin. Credit: NOAA/NEFSC/Danielle Cholewiak Image collected under MMPA Research permit #17355.

17.1 Data Collection

Figure 17-2 Track lines and common bottlenose dolphin sightings 2010 - 2013

Platform	Effort (km)		Common name	Species	Total sightings / Total animals		als			
	Spring	Summer	Fall	Winter	_		Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Common bottlenose dolphin	Tursiops truncatus	0/0	188/2014	0/0	0/0
NE Aerial	7,502	10,468	11,038	3,573			34/176	3/51	29/370	0/0
SE Shipboard	0	8,537	2,093	0			0/0	102/2149	35/695	0/0
SE Aerial	17,978	16,835	11,818	6,007			219/2046	222/2760	146/1875	82/542

Table 17-1 Research effort 2010 - 2013 and common bottlenose dolphin sightings

17.2 Mark-Recapture Distance Sampling Analysis

Table 17-2 Parameter estimates from common bottlenose dolphin (CBDO) MRDS analysisHR=Hazard Rate, HN= Half Normal, LT= Left truncation, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p-value	CvM p-value
SE-aerial group 5	1	CBDO	Distance*observer+size+sea	Distance+sea	400	HR	0.814	0.039	1.94E-3	0.486	0.671
	2		-	Distance	400	HR	-	-	3.01E-5	0.743	0.667
NE-aerial group 6	1	CBDO	Distance+glare	Distance	LT50-350	HN	0.657	0.183	0.079	0.797	0.542
	2		-	Distance	LT50-350	HN	-	-	0.943	0.799	0.661
SE–shipboard group 5	-	CBDO	Distance	Distance+sea	4300	HR	0.609	0.110	0.525	0.956	0.975
NE-shipboard group 10	-	CBDO	Distance*observer+size+sea	Distance+sea	5000	HR	0.643	0.105	0.253	0.854	0.929

Figure 17-3 Q-Q plots and detection functions from common bottlenose dolphin MRDS analysis

Group 5 aerial southeast region (a,b), group 6 aerial northeast region (c,d), group 10 shipboard northeast region (e,f) and group 5 shipboard southeast region (g,h).

17.3 Generalized Additive Model Analysis

	Appr	oximate si	gnificance	of smooth te	rms	
	edf	Ref.df	F	p-value	std.dev	
s(sst)	3.3606	4	6.229	5.29e-06	6.1344e-02	***
s(pp)	2.5684	4	31.460	< 2e-16	5.4862e-06	***
s(mld)	3.5618	4	19.937	< 2e-16	6.2836e-03	***
s(dist2shore)	3.4029	4	27.955	< 2e-16	1.8349e-03	***
s(slope)	0.8898	4	3.458	4.80e-05	4.7549e-03	***
s(dist200)	3.6778	4	38.428	< 2e-16	1.7829e-07	***
te(lat,btemp)	18.265	24	17.033	< 2e-16		***
Scale					2.0935e+00	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Estimated degrees of freedom : Total = 35.74

 R^2 (adjusted) = 0.0363 Deviance explained = 22.3%

REML = 4973.4 Scale estimate = 2.4748 sample size = 11083

Figure 17-4 Common bottlenose dolphin density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.314	Excellent
MAPE	Mean absolute percentage error	Non-zero density	77.60	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.187	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.386	Fair to good

Table 17-4 Diagnostic statistics from common bottlenose dolphin habitat model

The cutoff values are taken from Kinlan et al. 2012 Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3 MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50% MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

17.4 Abundance Estimates for AMAPPS Study Area

Season	Abundance	CV	95% Confidence Interval
Spring (March- May)	111,720	0.376	54,756 - 227,943
Summer (June-August)	138,700	0.364	69,417 – 277,133
Fall (September-November)	104,971	0.24	65,967 – 167,038
Winter (December-March)	110,485	0.54	41,027 - 297,536

Table 17-5 Common bottlenose dolphin average abundance estimates for AMAPPS study areaAvailability bias correction: aerial 0.785, CV=0.364; shipboard 1, CV=0.0.

Figure 17-5 Annual abundance trends for common bottlenose dolphins for AMAPPS study area

17.5 Seasonal Prediction Maps

Figure 17-6 Common bottlenose dolphin spring average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 17-7 Lower 2.5% percentile of spring common bottlenose dolphin estimates

Figure 17-8 Upper 97.5% percentile of spring common bottlenose dolphin estimates

Figure 17-9 Common bottlenose dolphin 2010-2013 spring density and 1968-2014 OBIS sightings

Pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 17-10 Common bottlenose dolphin spring 2014 density and AMAPPS 2014 tracks and sightings

These sightings were not used to develop the density-habitat model.

Figure 17-11 CV of spring denstiy estimates for common bottlenose dolphins

Figure 17-12 Common bottlenose dolphin summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 17-13 Lower 2.5% percentile of summer common bottlenose dolphin estimates

Figure 17-14 Upper 97.5% percentile of summer common bottlenose dolphin estimates

Figure 17-15 Common bottlenose dolphin 2010 - 2013 summer density and 1968-2014 OBIS sightings

Pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 17-16 CV of summer density estimates for common bottlenose dolphins

Figure 17-17 Common bottlenose dolphin fall average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 17-18 Lower 2.5% percentile of fall common bottlenose dolphin estimates

Figure 17-19 Upper 97.5% percentile of fall common bottlenose dolphin estimates

Figure 17-20 Common bottlenose dolphin 2010-2013 fall density and 1968-2014 OBIS sightings Pink circle (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 17-21 CV of fall density estimates for common bottlenose dolphins

Figure 17-22 Common bottlenose dolphin winter average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 17-23 Lower 2.5% percentile of winter common bottlenose dolphin estimates

Figure 17-24 Upper 97.5% percentile of winter common bottlenose dolphin estimates

Figure 17-25 Common bottlenose dolphin 2010-2013 winter density and 1968-2014 OBIS sightings

Pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 17-26 CV of winter density estimates for common bottlenose dolphins

17.6 Wind Energy Study Areas

Table 17-6 Common bottlenose dolphin average abundance estimates for wind energy study areas

95% Confidence Season Area Abundance* CV Interval Rhode Island/ 246 0.197 168 - 360 Spring Massachusetts (March-May) New York 171 0.17 123 - 238 New Jersey 1,169 0.133 902 - 1,515 Delaware/ 913 0.104 745 - 1,119 Maryland Virginia 448 364 - 552 0.107 North Carolina 751 0.147 564 - 1,000South Carolina/ 7.234 0.092 6,048 - 8,653 North Carolina 986 800 - 1.214Georgia 0.107 Florida 101 0.261 61 - 168 Rhode Island/ 861 - 1,430 Summer 1,110 0.13 Massachusetts New York 720 0.202 487 - 1066 (June-August) 3.371 -New Jersey 0.31 6,106 11,060 Delaware/ 2,417 0.144 1,824 - 3,203Maryland Virginia 366 0.107 297 - 451 North Carolina 421 347 - 512 0.1 South Carolina/ 9,722 -11,288 0.076 North Carolina 13,106 0.089 Georgia 1857 1,559 - 2,211Florida 160 0.288 92 - 278 Rhode Island/ Fall 777 0.14 592 - 1,020 Massachusetts (September-November) New York 394 0.212 261 - 594 New Jersey 2,428 0.14 1,850 - 3,188 Delaware/ 1,534 0.109 1,240 - 1,898Maryland Virginia 333 0.101 273 - 405 North Carolina 350 285 - 429 0.104 South Carolina/ 8,263 0.084 7,012 - 9,736 North Carolina Georgia 1,315 0.098 1,087 - 1,592Florida 116 0.296 66 - 205

Availability bias correction: aerial 0.785, CV=0.364; shipboard 1, CV=0.0.

Table 17-6 (cont'd)

Season	Location	Abundance*	CV	95% Confidence Interval
Winter	Rhode Island/ Massachusetts	105	0.233	67 - 165
(December-February)	New York	47	0.203	32 - 70
	New Jersey	343	0.181	241 - 487
	Delaware/ Maryland	395	0.171	283 - 550
	Virginia	278	0.122	219 - 353
	North Carolina	550	0.163	400 - 756
	South Carolina/ North Carolina	8,336	0.155	6,158 - 11,283
	Georgia	1,110	0.201	752 – 1,639
	Florida	67	0.263	40 - 111

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value as estimated by the habitat model. N/A indicates it was assumed to be in the True 0 modeled area.

Figure 17-27 Annual abundance trends for common bottlenose dolphins in wind energy study areas

18 Harbor Porpoise (Phocoena phocoena)

Figure 18-1 Harbor porpoise. Credit: NOAA/NEFSC/Peter Duley Image collected under MMPA Research permit #775-1875.

18.1 Data Collection

Figure 18-2 Track lines and harbor porpoise sightings during 2010 - 2013
TABLE 17.1. AMAPPS research effort 2010 – 2013 and harbor porpoise sightings.

Platform	Effort (km)				Common name	Species	Total sightings / Total animals			nals
	Spring	Summer	Fall	Winter	_		Spring	Summer	Fall	Winter
NE Shipboard	0	8,146	0	0	Harbor porpoise	Phocoena phocoena	0/0	4/6	0/0	0/0
NE Aerial	7,502	10,468	11,038	3,573	-	-	125/175	347/1,232	50/128	66/88
SE Shipboard	0	8,537	2,093	0	-	-	0/0	0/0	0/0	0/0
SE Aerial	17,978	16,835	11,818	6,007	-	-	4/6	0/0	0/0	2/4

Table 18-1 Research effort 2010 - 2013 and harbor porpoise sightings

18.2 Mark-Recapture Distance Sampling Analysis

Table 18-2 Parameter estimates from harbor porpoise (HAPO) MRDS analysis

HR= Hazard Rate, HN= Half Normal, codes explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p-value	CvM p-value
NE-aerial group 5	1	НАРО	Distance*observer	Distance	600	HN	0.399	0.208	0.171	0.725	0.773
	2		-	Distance	300	HN	-	-	0.181	0.447	0.615

18.3 Generalized Additive Model Analysis

Table 18-3 Spring ha	bitat model output for	harbor porpoises
----------------------	------------------------	------------------

		Approximate significance of smooth terms					
	edf	Ref.df	F	p-value	std.dev	_	
s(pp)	0.9518	4	26.5	<2e-16	8.43E-07	***	
s(dist2shore)	2.958	4	34.71	<2e-16	4.56E-03	***	
s(dist200)	1.1935	4	17.77	<2e-16	2.73E-08	***	
s(lat)	1.8657	4	72.18	<2e-16	1.15E+00	***	
Scale	-	-	-	-	1.74E+00		

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated degrees of freedom: Total = 7.97

 R^2 (adjusted) = 0.0642 Deviance explained = 49.9%

REML = 311.49 Scale estimate. = 0.41138 sample size = 3894

Figure 18-4 Harbor porpoise spring density related to significant habitat covariates Shaded region represents the 95% credible intervals.

	Approximate significance of smooth terms						
	edf	Ref.df	F	p-value	std.dev		
s(pic)	0.9714	4	71.38	<2e-16	4.51E+02	***	
s(mld)	0.9724	4	99	<2e-16	8.02E-04	***	
s(depth)	0.9729	4	113.45	<2e-16	3.06E-05	***	
s(lat)	1.9164	4	177	<2e-16	4.74E+00	***	
Scale	-	-	-	-	2.16E+00		
Signif. codes:	0 '***' 0.001	***' 0.01	·*' 0.05 '.' 0.1	· ' 1			

Table 18-4 Summer habitat model output for harbor porpoises

Estimated degrees of freedom: Total = 5.83

 R^2 (adjusted) = 0.107 Deviance explained = 69.3%

REML = 520.64 Scale estimate = 0.35874 sample size = 5880

Figure 18-5 Harbor porpoise summer density related to significant habitat covariates Shaded region represents the 95% credible intervals.

	Α	Approximate significance of smooth terms						
	edf	Ref.df	F	p-value	std.dev			
s(sst)	0.582	4	5.025	1.74E-09	2.87E-02	***		
s(dist2shore)	0.9488	4	68.294	< 2e-16	1.08E-03	***		
s(dist200)	0.8208	4	20.741	< 2e-16	2.31E-08	***		
s(lat)	0.8733	4	28.397	< 2e-16	8.13E-02	***		
Scale.	-	-	-	-	2.12E+00			
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1								
Estimated degr	Estimated degrees of freedom: Total = 4.23							

Table 18-5 Fall habitat model output for harbor porpoises

 R^2 (adjusted) = 0.183 Deviance explained = 66.6%

REML = 100.59 Scale estimate = 0.21189 sample size = 2461

Figure 18-6 Harbor porpoise fall density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.241	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	87.97	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.171	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.048	Excellent

Table 18-6 Diagnostic statistics from harbor porpoise spring habitat model

The cutoff values are taken from Kinlan et al. 2012

Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

Table 18-7 Diagnostic statistics from harbor porpoise summer habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero	0.260	Fair to good
MAPE	Mean absolute percentage error	Non-zero	80.40	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.252	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.127	Excellent

The cutoff values are taken from Kinlan et al. 2012

Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

Table 18-8 Diagnostic statistics from harbor porpoise fall habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero	0.178	Fair to good
MAPE	Mean absolute percentage error	Non-zero	85.77	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.163	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.047	Excellent

The cutoff values are taken from Kinlan et al. 2012

Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

18.4 Abundance Estimates for AMAPPS Study Area

Season	Abundance	CV	95% Confidence Interval
Spring (March- May)	30,126	0.195	20,646 - 43,959
Summer (June-August)	83,250	0.176	59,139 - 117,191
Fall (September-November)	17,943	0.485	7,287 – 44,180

Table 18-9 Harbor porpoise average abundance estimates for AMAPPS study area Availability bias correction: aerial 0.628, CV= 0.299; shipboard 1, CV= 0.0.

Figure 18-7 Annual abundance trends for harbor porpoises for AMAPPS study area

18.5 Seasonal Prediction Maps

Figure 18-8 Harbor porpoise spring average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 18-9 Lower 2.5% percentile of spring harbor porpoise estimates

Figure 18-10 Upper 97.5% percentile of spring harbor porpoise estimates

Figure 18-11 Harbor porpoise 2010-2013 spring density and 2010-2013 OBIS sightings Pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 18-12 CV of spring density estimates for harbor porpoises

Figure 18-13 Harbor porpoise summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 18-14 Lower 2.5% percentile of summer harbor porpoise estimates

Figure 18-15 Upper 97.5% percentile of summer harbor porpoise estimates

Figure 18-16 Harbor porpoise 2010-2013 summer density and 2010-2013 OBIS sightings Pink circles (Halpin et al. 2009). These sightings were not used to develop the density-habitat model.

Figure 18-17 CV of summer density estimates for harbor porpoises

Figure 18-18 Harbor porpoise fall average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 18-19 Lower 2.5% percentile of fall harbor porpoise estimates

Figure 18-20 Upper 97.5% percentile of fall harbor porpoise estimates

Figure 18-21 Harbor porpoise 2010-2013 fall density and 2010-2013 OBIS sightings Pink circle (Halpin *et al.* 2009). These sightings were not used to develop the density-habitat model.

Figure 18-22 CV of fall density estimates for harbor porpoises

18.6 Wind Energy Study Areas

Season	Area	Abundance*	CV	95% Confidence Interval
Spring	Rhode Island/ Massachusetts	1,478	0.079	1,266 – 1,725
(March-May)	New York	166	0.082	141 - 195
	New Jersey	36	0.135	28 - 47
	Delaware/ Maryland	3	0.213	2 - 4
	Virginia	0	0.535	0 - 0
	North Carolina	0	0.684	0 - 0
	South Carolina/ North Carolina	0	2.037	0 - 0
	Georgia	0	3.003	0 - 0
	Florida	N/A	-	-
Summer	Rhode Island/ Massachusetts	26	0.174	18 - 36
(June-August)	New York	0	0.371	0 - 0
	New Jersey	0	0.935	0 - 0
	Delaware/ Maryland	0	2.057	0 - 0
	Virginia	0	2.603	0 - 0
	North Carolina	0	3.298	0 - 0
	South Carolina/ North Carolina	0	8.628	0 - 0
	Georgia	0	11.327	0 - 0
	Florida	N/A	-	-
Fall	Rhode Island/ Massachusetts	21	0.159	16 - 29
(September- November)	New York	3	0.18	2 - 4
	New Jersey	4	0.217	3 - 7
	Delaware/ Maryland	2	0.24	1 - 3
	Virginia	0	0.292	0 - 0
	North Carolina	0	0.323	0 - 0
	South Carolina/ North Carolina	0	0.486	0 - 0
	Georgia	0	0.642	0 - 0
	Florida	N/A	-	-

Table 18-10 Harbor porpoise average abundance estimates for wind energy study areasAvailability bias correction: aerial 0.628, CV= 0.299; shipboard 1.0, CV= 0.0

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value as estimated by the habitat models.

Figure 18-23 Annual abundance trends for harbor porpoises in wind energy study areas

19 Phocidae At-sea

Figure 19-1 Gray seal at-sea. Credit: NOAA/NEFSC/Peter Duley Image collected under MMPA Research permit #775-1875.

19.1 Data Collection

Figure 19-2 Track lines and seals at-sea sightings during 2010 - 2013

Platform	Effort (km)				Common name	Species	Total sightings / Total animals			imals
	Spring	Summer	Fall	Winter			Spring	Summer	Fall	Winter
NE	0	8,146	0	0	Grey seal	Halichoerus grypus	0/0	0/0	0/0	0/0
Shipboard					Harbor seal	Phoca vitulina	0/0	0/0	0/0	0/0
					Unknown seal		0/0	1/1	0/0	0/0
NE	7,502	10,468	11,038	3,573	Grey seal	Halichoerus grypus	1/1	0/0	2/26	0/0
Aerial					Harbor seal	Phoca vitulina	0/0	3/3	2/2	0/0
					Unknown seal		87/116	44/48	6/6	0/0
SE	0	8,537	2,093	0	Grey seal	Halichoerus grypus	0/0	0/0	0/0	0/0
Shipboard					Harbor seal	Phoca vitulina	0/0	0/0	0/0	0/0
					Unknown seal		0/0	0/0	0/0	0/0
SE	17,978	16,835	11,818	6,007	Grey seals	Halichoerus grypus	0/0	0/0	0/0	0/0
Aerial					Harbor seals	Phoca vitulina	0/0	0/0	0/0	0/0
					Unknown seals		0/0	0/0	0/0	1/1

Table 19-1 Research effort 2010 - 2013 and at-sea seal sightings

19.2 Mark-Recapture Distance Sampling Analysis

Table 19-2 Parameter estimates from seals at-sea mark-recapture distance sampling

HN= Half Normal, LT= Left truncation, codes are explained in main text.

ID	Step	Species	Mark-Recapture Model	Distance Sampling Model	Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p-value	CvM p-value
NE- aerial Seals		Phocidae	Distance*observer	Distance+Subj	453	HR	0.181	0.439	0.012	0.991	0.995

Observer = 1 detections

Figure 19-3 Q-Q plots and detection functions from seals at-sea MRDS analysis

19.3 Generalized Additive Model Analysis

	App						
	edf	Ref.df	F	p-value	std.dev	_	
s(sst)	1.2308	4	18.218	< 2e-16	2.28e-02	***	
s(pic)	3.1120	4	6.692	1.78e-06	3.49e+04	***	
s(pp)	0.8464	4	1.322	0.00437	6.11e-07	**	
s(dist200)	3.6927	4	7.925	5.35e-07	5.45e-07	***	
s(lat)	0.2114	4	0.066	0.2608	1.03e-02		
Scale					1.79e+00		
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							
Estimated degrees of freedom: $total = 11.3$							
R-sq.(adj) = 0	0.0973 De	viance exp	lained $= 30$).4%			
-REML = 469	9.35 Scale e	est. = 3.239	98 n = 23	67			

Figure 19-4 Seals at-sea density related to significant habitat covariates Shaded region represents the 95% credible intervals.

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation.	Non-zero density	0.378	Excellent
MAPE	Mean absolute percentage error	Non-zero density	87.66	Fair to good
RHO	Spearman rank correlation.	All data divided in 25 random samples	0.223	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.100	Excellent

Table 19-4 Diagnostic statis	tics for seals	at-sea habi	tat model
------------------------------	----------------	-------------	-----------

The cutoff values are taken from Kinlan et al. 2012

Rank R: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good = 1>=x>0.25; Excellent= x<=50% MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

19.4 Abundance Estimates for AMAPPS Study Area

Season	Abundance	CV	95% Confidence Interval
Spring (March- May)	43,781	0.265	26,237 - 73,056
Summer (June-August)	5,721	0.204	3,848 - 8,505
Fall (September-November)	6,279	0.273	3,711 - 10,625

Table 19-5 Seals at-sea average abundance estimates for AMAPPS study areaAvailability bias correction was not included in the estimates.

Figure 19-5 Annual abundance trends for seals at-sea for AMAPPS study area

19.5 Seasonal Prediction Maps

Figure 19-6 Seals at-sea spring average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 19-7 Lower 2.5% percentile of spring seals at-sea estimates

Figure 19-8 Upper 97.5% percentile of spring seals at-sea estimates

Figure 19-9 Seals at-sea 2010-2013 spring density and 1995-2015 OBIS sightings pink circles (Halpin *et al.* 2009), NEFSC database, and Duke University (Moxley et al. 2017). These sightings were not used to develop the density-habitat model.

Figure 19-10 CV of spring density estimates for seals at-sea

Figure 19-11 Seals at-sea summer average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 19-12 Lower 2.5% percentile of summer seals at-sea estimates

Figure 19-13 Upper 97.5% percentile of summer seals at-sea estimates

Figure 19-14 Seals at-sea 2010-2013 summer density and 1995-2015 OBIS sightings pink circles (Halpin *et al.* 2009), NEFSC database, and Duke University (Moxley *et al*, 2017). These sightings were not used to develop the density-habitat model.

Figure 19-15 CV of summer density estimates for seals at-sea

Figure 19-16 Seals at-sea fall average density estimates Black circles indicate grid cells with one or more animal sightings.

Figure 19-17 Lower 2.5% percentile of fall seals at-sea estimates

Figure 19-18 Upper 97.5% percentile of fall seals at-sea estimates

Figure 19-19 Seals at-sea 2010-2013 fall density and 1995-2015 OBIS sightings pink circles (Halpin *et al.* 2009), NEFSC database, and Duke University (Moxley *et al.* 2017). These sightings were not used to develop the density-habitat model.

Figure 19-20 CV of fall density estimates for seals at-sea

19.6 Wind Energy Study Areas

Season	Area	Abundance*	CV	95% Confidence Interval
Spring	Rhode Island/ Massachusetts	4,668	0.447	2,022 - 10,777
(March-May)	New York	908	0.403	424 - 1,943
	New Jersey	2,125	0.402	994 - 4,543
	Delaware/Maryland	383	0.463	161 - 910
	Virginia	N/A	-	-
	North Carolina	N/A	-	-
	South Carolina/ North Carolina	N/A	-	-
	Georgia	N/A	-	-
	Florida	N/A	-	-
Summer	Rhode Island/ Massachusetts	370	0.371	183 - 748
(June-August)	New York	47	0.519	18 - 122
	New Jersey	126	0.546	46 - 342
	Delaware/Maryland	23	0.515	9 - 60
	Virginia	N/A	-	-
	North Carolina	N/A	-	-
	South Carolina/ North Carolina	N/A	-	-
	Georgia	N/A	-	-
	Florida	N/A	-	-
Fall	Rhode Island/ Massachusetts	561	0.460	237 - 1,325
(September- November)	New York	85	0.565	30 - 238
	New Jersey	294	0.515	113 - 761
	Delaware/Maryland	34	0.580	12 - 99
	Virginia	N/A	-	-
	North Carolina	N/A	-	-
	South Carolina/ North Carolina	N/A	-	-
	Georgia	N/A	-	-
	Florida	N/A	-	-

Table 19-6 Seals at-sea average abundance estimates for wind energy study areasAvailability bias correction was not included in the estimates.

* The mean abundance is rounded to the nearest integer. If the mean abundance was rounded to zero, the CV calculation was performed using the actual abundance value as estimated by the habitat model. N/A indicates it was assumed to be in the True 0 modeled area.

Figure 19-21 Annual abundance trends for seals at-sea in wind energy study areas

20 References

- Halpin PN, Read AJ, Fujioka E, Best BD, Donnelly B, Hazen LJ, Kot C, Urian K, LaBrecque E, Dimatteo A, Cleary J, Good C, Crowder LB, Hyrenbach KD. 2009. OBIS-SEAMAP: The world data center for marine mammal, sea bird, and sea turtle distributions. Oceanography 22(2):104-115.
- Kinlan BP, Menza C, Huettmann F. 2012. Chapter 6: Predictive modelling of seabird distribution patterns in the New York Bight. Pp. 87-148. In Menza C, Kinlan BP, Dorfman DS, Poti M, Caldow C, editors. A biogeographic assessment of seabirds, deep sea corals and ocean habitats of the New York bight: Science to support offshore spatial planning. NOAA Technical Memorandum NOS NCCOS 141. Silver Spring, MD. 224 pp.
- Moxley JH, Bogomolni A, Hammill MO, Moore KMT, Polito MJ, Sette L, Sharp WB, Waring GT, Gilbert JR, Halpin PN, Johnston DW. 2017. Google haul out: Earth observation imagery and digital aerial surveys in coastal wildlife management and abundance estimation. Bioscience 2017 bix059. doi:10.1093/biosci/bix059.

20.1 OBIS-SEAMAP Contributors

- Ampela K, Miller-Francisco G. 2016. JAX FIREX aerial surveys 5-8 September 2012. (http://seamap.env.duke.edu/dataset/880).
- Barco S. 2013. Virginia Aquarium marine mammal strandings 1988-2008. (http://seamap.env.duke.edu/dataset/502).
- Barco S. 2014. Virginia and Maryland sea turtle research and conservation initiative aerial survey sightings, May 2011 July 2013. (http://seamap.env.duke.edu/dataset/1201).
- Barco S. 2014. Virginia CZM wind energy area survey- Vessel survey sightings November 2012 April 2014. (http://seamap.env.duke.edu/dataset/1196).
- Barco S. 2015. Marine mammal and sea turtle sightings in the vicinity of the Maryland wind energy area 2013-2015. (http://seamap.env.duke.edu/dataset/1340).
- Barco S. 2015. Virginia CZM wind energy area survey Left side May 2014 December 2014. (http://seamap.env.duke.edu/dataset/1229).
- Barco S. 2015. Virginia CZM wind energy area survey Right side May 2014 December 2014. (http://seamap.env.duke.edu/dataset/1231).
- Barco S. 2015. Virginia CZM wind energy area survey- Right side November 2012 April 2014. (http://seamap.env.duke.edu/dataset/1194).
- Barco S. 2016. Virginia CZM wind energy area survey- Left side November 2012 April 2014. (http://seamap.env.duke.edu/dataset/1192).
- Boisseau O. 2014. Visual sightings from Song of the Whale 1993-2013 (http://seamap.env.duke.edu/dataset/1158).
- Cole T, Khan C. 2016. NEFSC right whale aerial survey. (http://seamap.env.duke.edu/dataset/513).
- Contillo J. 2013. SEFSC dolphin photo-ID. (http://seamap.env.duke.edu/dataset/226).
- DenDanto D. 2004. Allied finback whale catalogue. (http://seamap.env.duke.edu/dataset/72).
- Diaz G. 2011. NOAA Southeast Fishery Science Center (SEFSC) commercial pelagic observer program (POP) data. (http://seamap.env.duke.edu/dataset/103151496)
- Epperson D. 2012. BOEM sperm whale seismic study (SWSS) S-Tag Argos telemetry. (http://seamap.env.duke.edu/dataset/810).
- Garrison L. 2013. SEFSC Atlantic surveys 1992. (http://seamap.env.duke.edu/dataset/3).

Garrison L. 2013. SEFSC Atlantic surveys 1999. (http://seamap.env.duke.edu/dataset/5).

- Garrison L. 2013. SEFSC Atlantic surveys, 1998 (3). (http://seamap.env.duke.edu/dataset/1).
- Garrison L. 2013. SEFSC mid-Atlantic *Tursiops* survey, 1995 (1). (http://seamap.env.duke.edu/dataset/90).
- Garrison L. 2013. SEFSC mid-Atlantic *Tursiops* survey, 1995 (2). (http://seamap.env.duke.edu/dataset/89).
- Garrison L. 2013. SEFSC mid-Atlantic *Tursiops* survey, 1995 (3). (http://seamap.env.duke.edu/dataset/88).
- Garrison L. 2013. SEFSC southeast cetacean aerial survey 1992. (http://seamap.env.duke.edu/dataset/87).
- Garrison L. 2013. SEFSC southeast cetacean aerial survey 1995. (http://seamap.env.duke.edu/dataset/86).
- Gerriets S. 2011. Atlantic Canada conservation data centre. (http://seamap.env.duke.edu/dataset/103150033).
- Harris LE. 2015. DFO Maritimes region cetacean sightings. Version 6 In OBIS Canada digital collections. Bedford Institute of Oceanography, Dartmouth, NS, Canada. Published by OBIS, Digital http://www.iobis.org/.
- Husum MA. 2011. HMAP-History of marine animal populations. (http://seamap.env.duke.edu/dataset/103150007
- Hyrenbach D. 2011. Hatteras eddy cruise 2004. (http://seamap.env.duke.edu/dataset/322).
- Hyrenbach D, Whitehead H. 2008. Sargasso sperm whales 2004. (http://seamap.env.duke.edu/dataset/306).
- Hyrenbach D, Huettmann F, Chardine J. 2012. PIROP Northwest Atlantic 1965-1992. (http://seamap.env.duke.edu/dataset/280).
- Johnston D, Swaim Z. 2013. DUML vessel-based surveys for proposed JAX USWTR site 2009-2011. (http://seamap.env.duke.edu/dataset/582) on 2016-07-26.
- Josephson B. 2015. AMAPPS northeast aerial cruise fall 2012. (http://seamap.env.duke.edu/dataset/1245).
- Josephson B. 2015. AMAPPS northeast aerial cruise spring 2012. (http://seamap.env.duke.edu/dataset/1247).
- Josephson B. 2015. AMAPPS northeast aerial cruise summer 2010. (http://seamap.env.duke.edu/dataset/1249).
- Josephson B. 2015. AMAPPS northeast aerial cruise summer 2011. (http://seamap.env.duke.edu/dataset/1233).
- Josephson B. 2015. AMAPPS northeast aerial cruise winter 2011. (http://seamap.env.duke.edu/dataset/1243).
- Josephson B. 2015. AMAPPS northeast shipboard cruise summer 2011. (http://seamap.env.duke.edu/dataset/1269).
- Josephson B. 2015. AMAPPS northeast shipboard cruise summer 2013. (http://seamap.env.duke.edu/dataset/1271).
- Josephson B. 2016. AMAPPS northeast aerial cruise spring 2014. (http://seamap.env.duke.edu/dataset/1379).
- Josephson B. 2016. AMAPPS northeast aerial cruise winter 2014. (http://seamap.env.duke.edu/dataset/1381).

- Josephson B. 2016. AMAPPS northeast shipboard cruise spring 2014. (http://seamap.env.duke.edu/dataset/1377).
- Josephson B, Garrison L. 2015. AMAPPS southeast aerial cruise fall 2012. (http://seamap.env.duke.edu/dataset/1288).
- Josephson B, Garrison L. 2015. AMAPPS southeast aerial cruise spring 2012. (http://seamap.env.duke.edu/dataset/1259).
- Josephson B, Garrison L. 2015. AMAPPS southeast aerial cruise summer 2010. (http://seamap.env.duke.edu/dataset/1273).
- Josephson B, Garrison L. 2015. AMAPPS southeast aerial cruise summer 2011. (http://seamap.env.duke.edu/dataset/1275).
- Josephson B, Garrison L. 2015. AMAPPS southeast aerial cruise winter 2011. (http://seamap.env.duke.edu/dataset/1277).
- Josephson B, Garrison L. 2015. AMAPPS southeast aerial cruise winter 2013. (http://seamap.env.duke.edu/dataset/1289).
- Kenney R. 2013. BLM CETAP air sightings. (http://seamap.env.duke.edu/dataset/283).
- Kenney R. 2013. BLM CETAP OPP sightings. (http://seamap.env.duke.edu/dataset/284).
- Kenney R. 2013. BLM CETAP ship sightings. (http://seamap.env.duke.edu/dataset/285).
- Kopelman A. 2013. Opportunistic marine mammal sightings from commercial whale watching vessels, Montauk, New York 1981-1994. (http://seamap.env.duke.edu/dataset/1006).
- Kopelman A. 2015. CRESLI marine mammal observations from whale watch cruises 2000-2014. (http://seamap.env.duke.edu/dataset/896).
- LaBrecque E. 2011. Cape Hatteras 04-05. (http://seamap.env.duke.edu/dataset/298).
- Lapolla F. 2013. The dolphin project. (http://seamap.env.duke.edu/dataset/304).
- Mallette SD, Lockhart GG, McAlarney RJ, Cummings EW, Pabst DA, McLellan WA, Barco SG. 2016. Offshore energy planning: Documenting megafauna off Virginia coast using aerial surveys. VAQF Scientific Report. 2016-04.
- Maughan B, Arnold K. 2010. UK Royal Navy marine mammal observations. (http://seamap.env.duke.edu/dataset/64).
- McLellan W. 2005. UNCW aerial survey 1998-1999. (http://seamap.env.duke.edu/dataset/272).
- McLellan W. 2006. UNCW marine mammal sightings 1998-1999. (http://seamap.env.duke.edu/dataset/66).
- McLellan W. 2007. UNCW marine mammal sightings 2002. (http://seamap.env.duke.edu/dataset/67).
- McLellan W. 2010. UNCW marine mammal sightings 2001. (http://seamap.env.duke.edu/dataset/65).
- McLellan W. 2011. UNCW aerial surveys for monitoring of proposed Onslow Bay USWTR site left side. (http://seamap.env.duke.edu/dataset/435).
- McLellan W. 2011. UNCW marine mammal aerial surveys 2006-2007. (http://seamap.env.duke.edu/dataset/400).
- McLellan W. 2011. UNCW right whale aerial survey 2005-2006. (http://seamap.env.duke.edu/dataset/360).
- McLellan W. 2011. UNCW USWTR JAX aerial surveys May Oct 2010 Left side. (http://seamap.env.duke.edu/dataset/687).
- McLellan W. 2011. UNCW USWTR JAX aerial surveys May Oct 2010 Right side. (http://seamap.env.duke.edu/dataset/688).

- McLellan W. 2011. USWTR JAX aerial survey Left side 2009-2010. (http://seamap.env.duke.edu/dataset/590).
- McLellan W. 2011. USWTR JAX aerial survey Left side 2010-2011. (http://seamap.env.duke.edu/dataset/745).
- McLellan W. 2011. USWTR JAX aerial survey Right side 2010-2011. (http://seamap.env.duke.edu/dataset/747).
- McLellan W. 2011. USWTR Onslow Bay aerial survey Left side 2008-2010. (http://seamap.env.duke.edu/dataset/586).
- McLellan W. 2011. USWTR Onslow Bay aerial survey Left side 2010-2011. (http://seamap.env.duke.edu/dataset/749).
- McLellan W. 2011. USWTR Onslow Bay aerial survey Right side 2008-2010. (http://seamap.env.duke.edu/dataset/588).
- McLellan W. 2011. USWTR Onslow Bay aerial survey Right side 2010-2011. (http://seamap.env.duke.edu/dataset/751).
- McLellan W. 2012. USWTR JAX aerial survey Left side 2011-2012. (http://seamap.env.duke.edu/dataset/857).
- McLellan W. 2012. USWTR JAX aerial survey Right side 2009-2010. (http://seamap.env.duke.edu/dataset/592).
- McLellan W. 2012. USWTR JAX aerial survey Right side 2011-2012. (http://seamap.env.duke.edu/dataset/859).
- McLellan W. 2013. UNCW aerial surveys for monitoring of proposed Onslow Bay USWTR site -Right side. (http://seamap.env.duke.edu/dataset/437).
- McLellan W. 2013. UNCW right whale aerial surveys 2008. (http://seamap.env.duke.edu/dataset/464).
- McLellan W. 2014. AFAST Hatteras aerial survey Left side 2011-2012. (http://seamap.env.duke.edu/dataset/851).
- McLellan W. 2014. AFAST Hatteras aerial survey Right side 2011-2012. (http://seamap.env.duke.edu/dataset/855).
- McLellan W. 2014. AFTT Hatteras aerial survey Left side 2012-2013. (http://seamap.env.duke.edu/dataset/1138).
- McLellan W. 2014. AFTT Hatteras aerial survey right side 2012-2013. (http://seamap.env.duke.edu/dataset/1140).
- McLellan W. 2014. AFTT JAX aerial survey Left side 2012-2013. (http://seamap.env.duke.edu/dataset/1128).
- McLellan W. 2014. AFTT JAX aerial survey right side 2012-2013. (http://seamap.env.duke.edu/dataset/1136).
- McLellan W. 2015. AFTT Cape Hatteras aerial survey Left side 2014. (http://seamap.env.duke.edu/dataset/1237).
- McLellan W. 2015. AFTT Cape Hatteras aerial survey Right side 2014. (http://seamap.env.duke.edu/dataset/1235).
- McLellan W. 2015. AFTT JAX aerial survey Left side 2014. (http://seamap.env.duke.edu/dataset/1241).
- McLellan W. 2015. AFTT JAX aerial survey Right side 2014. (http://seamap.env.duke.edu/dataset/1239).

- McLellan W. 2016. UNCW Norfolk Canyon aerial survey Right side 2015. (http://seamap.env.duke.edu/dataset/1356).
- Palka D. 2011. NEFSC 1995 AJ9501 (Part I). (http://seamap.env.duke.edu/dataset/56).
- Palka D. 2013. Harbor porpoise survey 1992 (AJ92-01). (http://seamap.env.duke.edu/dataset/302).
- Palka D. 2013. NEFSC 1995 AJ9501 (Part II). (http://seamap.env.duke.edu/dataset/290).
- Palka D. 2013. NEFSC 1995 PE9501. (http://seamap.env.duke.edu/dataset/296).
- Palka D. 2013. NEFSC 1995 PE9502. (http://seamap.env.duke.edu/dataset/294).
- Palka D. 2013. NEFSC 1999 AJ9902. (http://seamap.env.duke.edu/dataset/300).
- Palka D. 2013. NEFSC aerial circle-back abundance survey 2004. (http://seamap.env.duke.edu/dataset/398).
- Palka D. 2013. NEFSC aerial survey Experimental 2002. (http://seamap.env.duke.edu/dataset/107).
- Palka D. 2013. NEFSC aerial survey Summer 1995. (http://seamap.env.duke.edu/dataset/109).
- Palka D. 2013. NEFSC aerial survey Summer 1998. (http://seamap.env.duke.edu/dataset/113).
- Palka D. 2013. NEFSC deepwater marine mammal survey 2002. (http://seamap.env.duke.edu/dataset/292).
- Palka D. 2013. NEFSC harbor porpoise survey 1991. (http://seamap.env.duke.edu/dataset/288).
- Palka D. 2013. NEFSC mid-Atlantic marine mammal abundance survey 2004. (http://seamap.env.duke.edu/dataset/396).
- Palka D. 2013. NEFSC survey 1997. (http://seamap.env.duke.edu/dataset/58).
- Palka D. 2013. NEFSC survey 1998 (Leg 1). (http://seamap.env.duke.edu/dataset/60).
- Palka D. 2013. NEFSC survey 1998 (Leg 2). (http://seamap.env.duke.edu/dataset/62).
- Palka D. 2014. NEFSC survey 1991. (http://seamap.env.duke.edu/dataset/111).
- Smith A. 2014. Mystic Aquarium's marine mammal and sea turtle stranding data 1976-2011. (http://seamap.env.duke.edu/dataset/945).
- Speakman T. 2011. NOAA Atlantic bottlenose dolphin sightings in the coastal and estuarine waters near Charleston, SC 1994-2011. (http://seamap.env.duke.edu/dataset/737).
- Spontak D. 2012. JAX ASWEX aerial monitoring 2011. (http://seamap.env.duke.edu/dataset/868).
- Spontak D. 2012. JAX MAVEX aerial monitoring 2012. (http://seamap.env.duke.edu/dataset/875).
- Spontak D. 2012. JAX MISSILEX aerial monitoring 2010. (http://seamap.env.duke.edu/dataset/874).
- Spontak D. 2012. JAX SEASWITI aerial monitoring 2010. (http://seamap.env.duke.edu/dataset/866).
- Spontak D. 2012. JAX SEASWITI vessel monitoring 2010. (http://seamap.env.duke.edu/dataset/867).
- Spontak D. 2012. VACAPES ASWEX aerial monitoring 2011. (http://seamap.env.duke.edu/dataset/869).
- Spontak D. 2012. VACAPES FIREX aerial monitoring 2011. (http://seamap.env.duke.edu/dataset/871).
- Spontak D. 2013. JAX GUNEX aerial monitoring surveys October 2010. (http://seamap.env.duke.edu/dataset/893).
- Spontak D. 2013. JAX MAVEX September 2012. (http://seamap.env.duke.edu/dataset/895).
- Spontak D. 2013. VACAPES FIREX and ASW aerial monitoring 2010. (http://seamap.env.duke.edu/dataset/870).

- Spontak D. 2013. VACAPES MISSELEX aerial monitoring March 2013. (http://seamap.env.duke.edu/dataset/1017).
- Spontak D. 2014. Norfolk/VA Beach MINEX vessel surveys. (http://seamap.env.duke.edu/dataset/1072).
- Spontak D. 2014. Norfolk/VA beach photo-ID surveys August 2012-September 2013. (http://seamap.env.duke.edu/dataset/1166).
- Spontak D. 2015. Norfolk/VA beach inshore vessel surveys November 2012- November 2013. (http://seamap.env.duke.edu/dataset/1071).
- Stevick P. 2006. Allied humpback whale catalogue, 1976 2003. (http://seamap.env.duke.edu/dataset/73).
- Stevick P. 2013. YoNAH encounter. (http://seamap.env.duke.edu/dataset/274).
- Swaim Z. 2016. DUML vessel-based photo-id and biopsy surveys for proposed JAX USWTR site 2012-2015. (http://seamap.env.duke.edu/dataset/906).
- Swaim Z. 2016. DUML vessel-based photo-id and biopsy surveys in Onslow Bay CHPT OPAREA 2011-2015. (http://seamap.env.duke.edu/dataset/902).
- Swaim Z. 2016. DUML vessel-based photo-id and biopsy surveys in VACAPES OPAREA off Hatteras 2009, 2011-2015. (http://seamap.env.duke.edu/dataset/907).
- Urian K. 2013. DUML surveys for the stock discrimination of bottlenose dolphins along the Outer Banks of North Carolina 2011-2012. (http://seamap.env.duke.edu/dataset/1010).
- Urian K. 2013. DUML vessel-based line transect surveys for proposed Onslow Bay USWTR site 2007-2010. (http://seamap.env.duke.edu/dataset/433).
- Urian K. 2014. DUML coastal surveys on the occurrence, distribution and density of marine mammals in Camp Lejeune 2010-2013. (http://seamap.env.duke.edu/dataset/957).
- Van Parijs S. 2013. NEFSC marine mammal abundance cruise 2004 passive acoustic monitoring Rainbow click detections. (http://seamap.env.duke.edu/dataset/509).
- Whitt A. 2015. Marine mammal records of Cuba. (http://seamap.env.duke.edu/dataset/1190).
- Wolff N. 2011. Aerial survey of upper trophic level predators on Platts Bank, Gulf of Maine. (http://seamap.env.duke.edu/dataset/103150267) on 2016-09-07 and originated from iOBIS (http:www.iobis.org).
- Woolmer G. 2013. Historical distribution of whales shown by logbook records 1785-1913. (http://seamap.env.duke.edu/dataset/885).